10

DIGITAL
RESEARCH %

C
Language
Programmer’s Guide
for the
CP/M-86° Family
of Operating Systems

Copyright © 1983

Di gital Research
P. 0. Box 579
160 Central Avenue
Pacific G ove, CA 93950
TWK 910 360 5001

Al Rights Reserved

COPYRI GHT

Cop%/ri ght © 1983 by Digital Research Inc. Al
rights reserved. No part of this publication may be
reproduced, transmtted, transcribed, stored in a
retrieval system or translated into any | anguage or
conputer |anguage, in any form or by any neans,
el ectronic, mechani cal, magnetic, optical, chem cal,
manual , or otherwise, wthout the prior witten
|ger_m ssion of Digital Research, Post Ofice Box 579,
acific Grove, California, 93950.

Readers are granted permission to include the
exanpl e programs, either in whole or in part, in
their own prograns.

DI SCLAI MER

Digital Research nmkes no representations or
warranties wWith respect to the contents hereof and
specifically disclains any inplied warranties of
nmerchantability or fitness for any particular
pur pose. Further, Digital Research reserves the
right torevise this publicationand to make changes
fromtime to tinme in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M and CP/M86 are registered trademarks of
Digital Research. Digital Research C, ASM 86, LIB-
86, LINK-86, TEX, and XREF-86 are trademarks of
Digital Research. UNIXis aregistered trademark of
Bell Laboratories. Intel is a registered trademark
of Intel Corporation. PDP-11 is a trademark of
Di gi tal Equi pnent Cor porati on.

The C Language Programmer's Quide for the CP/ M 86
Fani 'y of Operating Systens was prepared using the
Digital Research TEX™ Text Formatter and printed in
the United States of America.

[EEEEEEEEEE R EEEEREE SRR SRS TR RS ES

* Second Edition: October 1983 *

IEEEEEEEEE SRR T TR EEEEEEEEEEEEEEEE

For ewor d

Digital Research C*is a full-function inplementation of the
standard Cprogranm ng | anguage. Thi s i npl ementati on runs under the
CP/ M 86® operating system based on the Intel ®8086/8088 fam |y of
mi croprocessors. Unlike many other C |anguage inplenentations,
Digital Research Cenabl es you towite prograns that are conpletely
portabl e between CP/ M® and the UNI X® operating system

The Di gi tal Research Csystemconsists of two executabl e ConBonent s:

the C conpiler and the reverse preprocessor. The systemsubroutine
libraries suloport two 8086/ 8088 program nmenory nodel s: small and
big. Systemlibraries are conpatible with UNIXVersion 7. Conpiler

options acconmpdate direct control over many aspects of the
conpi | ation process and provi de progranmer access to useful compiler

generated listings and interlistings. An extensive error warning
and reporting system expedites program devel opment with explicit
di agnosti c nessages. Programmer's utilities for use with the
Digital Research Csysteminclude the LINK-86™ |inkage editor, the
LIB-86™ library utility, the XREF-86™ assenbly |anguage cCross-

reference utility program and the RASM 86™ rel ocat abl e assenbl er.

Three docunents supply the necessary information for using the C
| anguage, C system software, and the programmer' s utilities.

e Digital Research. C Language Programmer's Cuide for the CP/ M
86 Family of Operating Systens, Pacific Gove, California:
Digital Research, 1983 (cited as Programmer's Cuide).

e Digital Research. Programmer's Utilities Guide for the CP/ M 86
Fanmily of Operating Systens. Pacific Gove, California
Digital Research, 1983 (cited as Programmer's Uilities

CQui de).

e Kernighan, Brian W, and Dennis M Ritchie. The C Programing
Language. Englewod O iffs, NewJersey: Prentice-Hall, 1978.

The Programmer's GCuide consists of seven sections and six
appendi xes. The manual provides all the information you need to
operate the C system software.

e Section 1 defines the conputer resources you need to use
Digital Research C and the individual conponents that make up
the C software system A sinple denonstration program hel ps
you get your C systemup and running.

e Section 2 explains how to use the C conpiler. A second
denonstration programprovides a nore detailed description of
the conpiling, linking, and running procedure.

e Section 3 describes each function in the Csystemlibrary. A
directory at the beginning of the section helps you locate
speci fic function descriptrons easily.

® Section 4 explains the use of files and other input/output
conventi ons.

@ Section 5 explains howto interface assenbly routines with C
modul es.

e Section 6 describes internal data representations.

e Section 7 explains the use of overlays.

Appendi xes include a listing of error nessages, summaries of system
library functions and conpiler options, a useful programming style
gui de,” and sonme sanple C source code nodul es,

Thi s programmer's gui de does not attenpt to describe features of the
C language. The Kernighan and Ritchie manual provides both an
excel l'ent C language reference section for the experienced
programrer and a tutorial introductiontohelpthe novice progranmer
get started in C The Programmer's Utilities Guide presents in-
depth expl anations of the Digital Research linkage editor, library
utility, and relocatable assenbler. Together, the three nmanual s
provide all the information you need to use Digital Research Cto
its fullest potential.

Digital Research is interested in your comments on prograns and
docunentation. Pl ease use the Software Performnce Reports and the
Reader Comment Card enclosed in each product package to help us
provide you with better software products.

Table of Contents

Getting Started with C

1.1
1.2
1.3
1.4
1.5

Syst em Requi renment s
Run-time Requirements .
C Conponent s

M ni mum Confi guration .

A Sinpl e Denonstration

Qperating C

2.1

2.2
2.3
2.4

2.5

Conpi | er Operation

Conpi | er Command Li nes .

St oppi ng the Conpil er ;
Conpi | er Command Line Opti ons
Mermory Al l ocation Data . . ‘
2.1.5 Error Messages T

NISISIN
PR
AwWN PR

Start-up Routines and Stand-al one Prograns
Reverse Preprocessor Qperation
Mermory Model s .

2.4.1 Small Menory Model
2.4.2 Big Menory Mdel

Conpi | i ng, Linking, and Running TEST.C

C System Li brary

3.1
3.2

UNI X V7 Conmpatibility .
System Li brary Routines .

abs Function 5

access Function
atoi, atof, atol Functions
brk, sbrk Funct|ons

calloc, malloc, zaIIoc, reall oc, free Functions . .

chnmod, chown Functions

&1
ik
1-3
1-4

N
)

I\JII\JI\)
NN N [

2-13
2-13

2-15
2-16
2-17

2-18
2-19

2-20

3-1
3-2

3-5
3-6
3-7
3-8
3-9
3-11

Table of Contents
(continued)

cl oselZFuncti ONi=G=a 5 s o —u & a
cos, sin Functions . . SR
creat, creata, creath Functions . . .
ctype Functions . . . « « « « .« « . .
execl Function . . i e .
exit, _exit Funct|ons T 3

exp FUNCE | O s rt iy el e o

a8 8 & 8 ®

fabs Function

fclose, fflush Funct|ons
feof, terror, clearerr, flleno Funct|ons

f open, freopen fdopen Functions
fread, fwite Functions . . i e
fseek, ftell, rewnd Functions
getc, getchar fgetc, getw, getl Functions
get pass Function Sl B S

getpid FUNCLIiON &4 & « « o« « « o« & o« o & o &
gets, fgets Functions « . « .+ .« . .
i ndex, rindex, strchr, strrchr Functions
isatty FUNCLIiON & & « o o o o o & & & @

log, lToglOFunctions « . « « « .
I seek, tell Functions « « « « « « .
nktenp Function . . . R
open, opena, openb Functions
perror Function ‘s
printf, fprintf, sprlntf Functlons s

put c, putchar, fputc, putw, putl Functi ons
puts, fputs Functions « .« « . . .
gsort Function . . e R G T R
rand, srand Functions .

read Function . . . S S e e e
scant, fscanf, sscanf Functions . T
set buf Function . . R e 5
setjmp, |ongjnp Functions 5
sqrt Function . . . SR :

strcat, strncat Funct|ons e
strcnp, strncnp Functions . . .
strcpy, strncpy Functions
strlen Function . « « +« « « « « &

s Ne & & » & »

swab Function . . S Ry e
tan, atan FUNCE] ONShe » s weniia s
toascii, tolower, toupper Functions . . .
ttyname Function « .« . . e
ungetc Function . . « + « « « + « 4 . .
unlink Function « « « « & e

wite Function

Vi

0 .

3-12
3-13
3-14
3-15
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-25
3-26
3-27
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-40
3-43
3-45
3-46
3-47
3-48
3-49
3-52
3-53
3-54
3-55
3-56
3-57
3-58
3-59
3-60
3-61
3-62
3-63
3-64
3-65

Table of Contents
(continued)

I nput/ Qut put Conventi ons

4.1
4.2
4.3
4.4

Regul ar File Access .
Stream Fi | e Access
Peri pheral Devices

Standard 1/ OFiles

Assenbl er Routine Interfacing

5.1

5.2
5.3
5.4
5.5
5.6

Ext ernal Nami ng Conventions

Calling an Assenmbly Routine froma C Mdule .
Calling a C Mdule froman Assenbly Routine .

Argunent Passing
Function Return Val ues

Accessing External Data .

Internal Data Representation

6.1 Character Storage .

6.2 Integer Storage .

6.3 Single-precision Floating-point

6.4 Doubl e-precision Floating-point

6.5 Pointer

Overl ays

7.1 Witing Prograns That Use Overl ays
7.2 LINK-86 Command Lines for C Overlays
7.3 GCeneral Overlay Constraints .

4-1
4e2
43
43

5-1
5-2
5-3
5-3
5-6
5-6

6-1
6- 2
6-3
6-3
6-4

7-3
7-4
7-5

Appendixes

System Li brary Routine Summary .
Conpi l er Option Sumary

Error Messages .

Vari ations anong Conpilers .

C Style Quide
EIl Mdularity

E 1. 1 Module Size . .
El. I nt er modul @ Conmuni cation
EI.3 Header Files . Fo

E 2 Required Codi ng Conventions .

Vari abl e and Constant Nanes
Variable Types . .
Expressi ons and Constants
Pointer Arithmetic

String Constants .

E 2.

mmmmmm
NISISISININ
~NOoOOTRWN -

Recommended Modul e Layout

E 3 Coding Suggestions

Sanmpl e C Modul es .

Viii

Initialized and Unlhltlallzed Data :

Al

B—l

Gl

D |

E
E

=
E |
E- |

E 2

B2
E-3
E-4
E-4
E-5
E5
E-6

E7

F-1

Tabl es
1- 1.
2-1.
3-1L
3-2
3-3.
3-4.
3-5.
3- 6.
4-1.
5-1
B-1.
Gl.
E-1.
E- 2.

Fi gures

=
1

NN Q0o qgl oy
DI OB QORISR ZE N = E

Tables Figures and Listings

C SystemDisk Files
Conpi | er Command Li ne Options
Vari abl e Type Macro Definitions

Storage Cl ass Macro Definitions

ctype Functions

perror Error Codes : a
Qut put Conver si on Char acters

I nput Conversion Characters
Standard I/OFile Definitions
Function Return Registers
Conpi | er Command Li ne Options
Error Messages

Variabl e Type Macro Definitions
Storage O ass Macro Definitions

M ni mum C Syst em Oper ati on

Smal | Menory Model
Big Menory Model .

Stack for Smal | Mbdel
Stack for Big Mdel

Character Storage . .
Short Integer Storage
Long I nteger Storage

Si ngl e- preci sion Fl oati ng- p0| nt St orage
Doubl e- preci si on Fl oati ng- poi nt Storage

Usi ng Overlays in a Large Program

Tree Structure of Overlays .

1- 2
2-3
3.3
3-3
3-15
3-38
3-41
3.50
4-3
5-6
B
Gl

E 3
E-3

1-4

2-18
2-19

~ -~ CDCD?’@G’ u1 U1
WN hrwroNoE 1Ol

Li stings

=N
Feo!
Fe3;
F- 4.
F- 5.
F- 6.
=iy

Tables, Figures, and Listings
(continued)

Printf Mdule.
Printf Internal Routine .
—Prnt8 Procedure .
~Prntx Function

Conv Function
_Putstr Function .
_Prtl Function

F-1
F-3
F-7
F-8
F-9
F-10
F- 1

Section 1
Getting Started with C

1.1 System Requirenents

To operate the C conpiler, you nmust have all of the follow ng
corlrput er resources. Menory requirenents specified bel oware nini num
val ues.

e 8086 or 8088 CPU running CH M 86.

@ 108K of user programarea in addition to the space occupi ed by
the operating system

e Enough disk space to hold the conpiler during conpilation.

e Enough di sk space to hold the tenporary file that the conpiler
generates. Typically, the tenporary space required is one-
third to one-half the size of your source file plus include
files.

e Enough disk space to hold the object file that the conpiler
creates.

1.2 Run-tine Requirenents

You nust have all of the follow ng conputer resources to execute
prograns conpiled with the C conpiler and linked with the system
subroutine libraries, Menory requirements specified below are
m ni mum val ues.

e 8086 or 8088 CPU running CP M 86

e from10K to 32K bytes for systemlibrary nodul es pl us space for
your program code

1.3 C Conponents

The Digital Research C software system consists of the two
execut abl e conponents of the Cconpiler, two versions of the system
subroutine library, and two sanple test prograns. The executable
conponents are the Cconpiler and the reverse preprocessor program
The system| i braries support two 8086/ 8088 nenory nodel s: small and
bi g nodel s. Refer to Section 2.4 for an explanation of nenory
model s. The C systemal so provides five special purpose files that
you can include’in a C programwith the linclude directive. Table
1-1 describes all the files on your C product disks.

1-1

C Language Programer's CGui de 1.3 C Conponents

Programmrer's utilities for use with the Digital Research C system
include the LINK-86 |inkage editor, the LIB-86 library utility, the
XKEF-86 assenbly | anguage cross-reference utility program and the
RASM 86 rel ocatabl e assenbl er.

Table 1-1. C SystemDisk Files

Conmponent Disk File Description
conpi | er DRC CVD conpi | er supervi sory modul e
DRC360. CMD preprocessor
DRC861. CMD parser and code generat or
DRC862. CMD Iigs}ing/di sassenbly file nerge
utility
DRC ERR error nessages
DRCRPP. CMD reverse preprocessor program
R VD program to run parts of the
conpi | er
#i ncl ude STDiQH macro definitions for standard
files input and output; contains a
directive that Includes PORTAB. H
PORTAB. H macro definitions for program
portability i :
CTYPE H ASCI | character classification
routines _ :
SETJMWP. H nonl ocal _pr_ogramg unmp routine
ERRNQ H macro definitions for the perror
function
[ibraries CLEARS. L86 isrrgl | nodel system subroutine
I brary
CLEARL. L86 big nodel system subroutine
l'ibrary
sanpl e SAMPLE. C C program ready to conpile,
pr ogr ams link, and run
TEST. C C test program that ensures
g;oper conponent functioning
STARTUP. A86 npl e start-up routine
READ. ME Updat ed not es on C sof tware and
docunent ati on. Use TYPE comand
to display notes.

C Language Programmer's Qui de 1.4 M ninum Configuration

1.4 M ninum Configuration

You nust have the following four files to execute the Cconpiler in
m ni mum confi guration:

e DRC CVD conpi | er supervisory nodul e

e DRC860. CMD preprocessor

e DRC861. CMD parser and code gener at or

e R C\VD program to run other parts of the conpiler

The conpiler supervisory nmpdule, DRC CMD, executes the other
conpiler modules in the proper sequence. DRC360.CMD is the
preprocessor, and DRC861. CMD is the parser and code generator.

The conpiler error messages file, DRC. ERR, and the
listing/disassenbly file-nmergeutility, DRC862. CMD, are not required
during conpilation. |f DRC ERRis not on-line during conpilation,
the conpiler returns error messages by number only. DRC862. CMD
merges listing and disassenbly files together for a conplete
interlist display when you use the conpiler interlist option.

The listing file contains the source code | ines fromyour C program
The di sassenbly file contains conpiler generated assenbly code. The
assenbl y code the conpil er generates is actual |y an approxi nati on of
the correct 8086/88 assenbly code. It is provided for debugging
pur poses only.

If DRCB62.CMD is not on-line during conpilation, the interlist
option is ineffective and the conpiler outputs the |isting and
di sassenbly files separately.

Fol I owi ng conpi | ation, the |inkage editor requires one of the system
library files to create the executable program The library files
do not have to be on-1ine during conpilation The follow ng di agram
illustrates the mninmmC systemin operation.

C Language Progranmers Quide 1.4 M ni mum Configuration

CLEARS.L86 (OR)

CLEARL.L86
SYSTEM .SYM FILE
LIBRARY .MAP FILE

SOURCE C OBJECT

EXECUTABLE

PROGRAM COMPILER]| | PROGRAM LINKASS PROGRAM
CPROGRAM.C DRC.CMD CPROGRAM.OBJ LINK86.CMD CPROGRAM.CMD
DRC860.CMD
DRC861.CMD
R.CMD

Figure 1-1 M ni num C System Operation

1.5 A Sinple Denpbnstration

The followi ng sinple denonstration illustrates the st andard
procedure used to create an executabl e programwitten inC |f you
are an experienced C programner, you m ght want to skip this section
and continue with Section 2

The fol | owi ng instructions assunme you al ready know how to use your
operating system The instructions are for Con a CP/ M 86- based
systemw th two floppy-disk drives.

First, make back-up copies of your master Cproduct and programmer's
utilities disks, and store the original disks in asafe place. Your
operating systemdisk should be indrive A

1) Create a C work disk.

Using a file copy program such as PIP, create a C work
disk that contains the four conpiler files required for
ni ni num confi guration, the Iinkage editor, the snall nmodel
syst emlibrar%/, and SAMPLE G 1f you do not have enough
roomon disk for all the files, you can place the |inkage
editor and library on a separate disk. Your work disk or
di sks shoul d contain all of the following files:

C Language Programmer's Qui de 1.5 A Sinple Denopnstration

DRC CMVD conpi | er supervisory nodul e

DRC860. CMD preprocessor

DRC861. CMD parser and code gener at or

R C\VD program to run other parts of the conpiler
LI NK86. CMD |inkage editor

CLEARS., L86 smal | nodel systemlibrary

SAMPLE C sanpl e program

Wth your operating systemdisk in drive A, place your new
C work disk that contains SAMPLE C in drive B. SAMPLE C
uses a sinple for-loop and the printf function to print a
short series of nessages. You can display the SAMPLE C
source program on your terminal with the CP/M86 TYPE
command. Make sure drive Bis the default drive and enter
the foll owi ng conmand:

B>TYPE SAMPLE C

The fol | owi ng out put appears on your termnal screen:

mai n()
int val?

for (val = 07 val <= 3; val++)
printf("% TESTING G n", val)?

printf("\NN);
printf("FINSHED\NMN);

B>

2) Conpile the program

To conpi | e the SAMPLE C source program enter the fol |l ow ng
command. Be sure drive B is the default drive.

B>DRC SAMPLE

Note that you do not have to specify the .C filetype for
the source program First, the conpiler searches the
default drive for SAMPLE with no filetype. When the
conpil er cannot find SAVPLE, it automatically searches for
SAMPLE, C

The conpiler displ aél_s a sign-on banner as shown in the
fol | owing display. Sign-on banners nmight vary slightly for
different versions of the conpiler, xt the preprocessor
and parser/code generator nodul es display short nessages
indicating execution, At the end of conpilation, the
conpi l er displays a nenory allocation nessage. The nmenory

C Language Programer's Guide 1.5 A Sinple Denpnstration

3)

al | ocation message indicates the amount of space that the
conpiler allocates for the different parts of the program
Val ues i n the menory al | ocation message ni ght vary slightly
for different versions of the C conpiler. Section 2.14
describes the different parts of the nenory allocation
message in nore detail.

Digitaii-Resea-ir-ch Cm . e Versiori_XX
Serial No. XXXX XXX XXXXXX Al Rights Reserved
Copyright (c) 1983 Di gital Research, Inc.

Digital Research C Version X X —=Preprocessor

Digital Research C Version X X —=Code Gen

sanpl e. c: code 67 static 27 extern 160
B>

The conpi | er conpil es SAMPLE C according to the 8086 smal |
menory nodel by defaul t. Refer to Section 2.4 for an
expl anation of menmory nodels. The conpi l er then creates
the rel ocatabl e object file for the program The conpiler
names the object file with the same filename as t he input
source file but with a.oBJ filetype. This is the default
object file naming convention. A directory for disk B
shoul d have the newfile SAMPLE OBJ. If you are usi ng two
separate work disks, copy SAMPLE OBJ onto the disk that
contains LI NK-86 and the shal | nodel systemlibrary. Place
the LINK-86 disk in drive B

Li nk the program
The SAMPLE C file is conpiled according to the srhra

model. Therefore, you nust |ink SAVPLE OBJ wit
model system subroutine library.

|l nmenory
the smal |

You do not have to specify the library nane explicitly in
the linker command line if the library file is on the
default drive. The conpiler creates ‘a special object
record in SAVPLE. OBJ. This record contains information
that tells LINK-86 which systemlibrary to search for any
required routines. To run LINK-86, enter the follow ng
command. Be sure drive B is the default drive.

B>LI NK86 SAMPLE

C Language Programmers Cuide 1.5 A Sinple Denonstration

LI NK-86 assunes a filetype of .0BJ for the object file you
specify in the command |ine. LINK-86 displays a sign-on
message and sone allocation messages on your terminal as
shown in the following display. Values in the allocation
messages mght vary slightly for prograns conpiled with
different versions of the C conpiler.

LI NK-86 Li nkage_éai_t or Version X X
Serial No. XXXX= XXXX« XXXXXX Al Rights Reserved
Copyright (c) 1982,1983 Digital Research, Inc.

CODE 02F2E
DATA OODBC

USE FACTOR 04%
B>

If you get no error nessages, the program has been |inked
successful ly. LI NK-86 creates a directly executable
program The directory for disk B should have the new
conmand file SAMPLE CMVD. Refer to Section 7 of the
Programmer’'s Uilities Quide to learn how LI NK-86 works.

4) Run the program
To run the SAMPLE. CNVD program enter the follow ng conmmand.
Be sure drive B is the default drive. Notice that you do
not have to specify the .CWD filetype.
B>SAMPLE

The fol | owi ng out put appears on your termnal screen:

0 TESTING C
1 TESTING C
2 TESTING C
3 TESTING C
FI NI SHED
B>

C Language Programmer's Quide 1.5 A Sinple Denonstration

If your C software does not seem to operate correctly, check the
system requirenents listed in Section 1.1 and the run-tine
requi rements listed in Section 1.2 Make sure your equipnent
conplies with the specified guidelines, Section 2.5 provides a nore
detail ed explanation of the conpiling, linking, and running
procedur es.

End of Section 1

Section 2
Operating C

The Digital Research Cconpiler is especially suited to comrerci al

systems and appl i cations devel opment. Enhanced di agnostic features,

such as conpi l er information massa?e display, error reporting, and a
l'isting/disassenmbly file-nmerge utility, provide expanded visibility
of conpiler-generated infornmation to sinplify debuggi ng and program
mai nt enance.

2.1 Conpiler Operation

To use the full Cconpiler configuration, the following six files
must be on-line:

e DRC CMD conpi | er supervisory nodul e

e DRC360. CMD preprocessor

e DRC861. CMD parser and code gener ator

e DRC862.CMD |isting/disassenbly file-nerge utility
e R C\VMD program | oader utility

e DRC ERR conpi l er error messages

You can pl ace DRC860. CMD, DRC861. CMD, and DRC862. CVD on different
drives for space considerations using the -0, -1, and - 2 conpiler

comand |ine options, respectively. Command |ine options are
described in Section 2.1.3. DRC CVMD and DRC ERR nust both be on t he

ge_f ault drive., Your source program file can be on any |ogical
rive.

The conpiler takes a C source program as input and generates an
object programinthe Intel relocatable object fileformat. During
conpilation, the conpiler creates tenporary work files named
CTEMP. TOK and COBJ. TMP. Unl ess conpilation is unsuccessful, you
never see a tenporary file listed in a directory. The conpiler
erases the files automatically when conpilation is finished.

The size of a tenporary file varies with the size of your source
program The total amunt of tenporary space required during
conpilation is approximately one-third to one-half the size of your
source file or files. If you do not have enough work space on di sk
for the conpiler, you can break up large prograns i nto nodul es and
conpi | e each nodul e separately.

2-1

C Language Programmer's Quide 2.1 Conpiler QOperation

2.1 1 Conpiler Command Li nes

The command |ine i nvokes the conpiler, specifies the source file to

conpi | e, and passes special instructions tothe conpiler inthe form

of command |ine conpiler options. A command |ine cannot exceed 128

}:har acters. Conpi ler command lines use the follow ng general
or mat:

DRC source file option swtches

Not e that you do not have to specify the.Cfiletype explicitly for
the source programin the command line. The conpiler assumes a.C
filetype unless you specify otherw se.

2.1 2 Stopping the Conpiler

To stop the conpiler during processing, press any consol e key. The
conpi |l er displays the follow ng nmessage:

Stop DRC (VY N?

Type a | owercase or uppercase Y to stop pr ocessing. The conpiler
i mredi ately returns control to the operating system |If you type
any character except Y, the conpiler resunmes processing.

2.1 3 Conpiler Command Line Options

Conmand |ine option switches are reserved characters (letters and
digits) that send special instructions to the conpiler. An option
sw tch specification consists of a dash followed by the reserved
character, You cannot place spaces between the dash and the
reserved character. However, you nust place at |east one space
Ib'Et ween each dash/ character conbination that you use in a command
i ne.

Notice that certain option swtches require an additional paraneter.
You cannot place spaces between the option character and the
par anet er, Under CP/ M86, you can enter conmand |ine option
switches in | owercase or uppercase and you can pl ace option switches
anywhere in a command |ine. For exanple, the following three
command |ine exanpl es produce the sane results.

B>DRC PROGRAM C - OPROGBI G OBJ -B -F -H
B>drc -b =f =h -oproghi g. obj program
B>DRC -B - OPROGBI G OBJ PROGRAM -f =h

The rest of Section 2.1 3 describes the conmand | ine option switches
inal phabetical order. Table 2-1is a sunmarized description of the
option switches |isted al phabetically.

C Language Programmer' s Cui de

Table 2-1. Conpil er Command Line Options

Option

Descri ption

-4 fileg

-i] drive]

-\| nunber|

I nvoke LI NK-86 automatically. "files" are
the object files and libraries to |ink.
Specify the filename and [I] for a LI NK-86

command line input file.

Enabl e bi? menory rmodel, (Default is
smal | nodel.)

Define "name" as the value 1. Works |ike
#define in the source code, but defines
names in | owercase only.

Use 8087 nath coprocessor.
Suppr ess Si gn-on banner.

fSeia\rch specified disk drive for #include
iles.

Di sabl e short/long junp optim zer.

Cenerate programlisting. Sendlistingto
"name". (Default "nane" is CON).

Di sable code optimzer for faster
conpi | ation.

Specify name for object file. If the
f11ename does not contain a period, ". OBJ"
wi || be appended.

Execut e preprocessor nodule only, Place
output in file CTEMP. TOK

Set nunber of code generator nodes to save
space in synbol table. (Default is 500;
m ni mum is 100.)

Request prO%ream interlisting (reverse
assenbl y). nd interlisting to "name".
(Default "name" is CON).

Set conpiler nessage display |evel.
Shoul d appear before other switches in
command line. "nunber" can range from1l
to5 to produce the fol l owing i nformation

-vl Di ispl ay general information nmessages
only.

2.1 Conpiler Operation

C Language Programmer's Quide 2.1 Conpiler Operation

Table 2-1. (continued)
Option 1 Description

-v2 Display a # character as conpiler
processes each function.

-v3 Display function nane as conpiler
processes each function.

-v4 Display start/end nessages for
tinclude files.

-v5 Display filenane and |ine nunber as
conpi | er processes each |ine.

v{ nunber| Set error nessage di splay | evel, "nunber"
can be 0, 1, or 2 Default is -wo

-wO Display all error messages.
-wW Suppress error warni ng messages.
-W2 Suppress all error messages.

- X Call an assenbly routine to save and
restore registers rather than generate

code todo it in-line. Programconpiles
snaller but runs slower. Use with small

nodel only.

-4 drive] Pl ace tenporary work files on specified
di sk drive.

-c| dri ve:| Speci fy | ocation of conpiler preprocessor
nmodul e (DRC860. CVD).

-I| dri ve:| Specify location of conpiler parser and
code generator npdul e (DRC861. CVD).

- drivel] Specify location of compiler
listing/disassenbly file merge utility
(DRC862. C\VD).

-4 drive] Speci fy | ocation of LI NK-86 (LI NK86. C\VD).

C Language Programrer's Qui de 2.1 Conpiler Operation

-a option

The -a option switch executes LINK-86 automatically at the end of
conpi lation. You nmust specify object files and any libraries other
than the systemlibrary after the -a in the conpiler conmand I|ine.
Alternatively, you can specify a LINK-86 input file using the | NPUT
option. Refer to Section 7.11, "Command I nput File Options," in the
Programer's Utilities Guide for nore information on the LINK-86
I'NPUT" opt i on.

The following command |ine exanple conpiles a program naned
PROGRAM C and automatical ly |inks the object file that the conpiler
creates with the small nodel systemlibrary. Notice that you do not
have to specifP/ t he ob{)ect file name or library file name explicitl

after the -A if that object file is the only file to be |inked wt

the systemlibrary on the default drive.

B>DRC PROGRAM =A

In this exanple, the conpiler, LINK-86, and the smal|l nodel system

library are all on the default drive (B). You can use the -3

Eﬁ\li(on switch to specify a drive other than the default drive for
- 86.

The conpi | er conpil es PROGRAM C according to the smal|l nenory nodel
and nanmes the obj ect fil e PROGRAM OBJ both by default. The conpiler
creates a special object record in PROGRAM OBJ that tells LINK-86
which systemlibrary to search for required routines depending on
whi ch menory nodel you specify for conpilation. Note that the
appropriate system [ibrary file nmust be on the default drive.
Gt herwi se, LINK-86 displays the NO FILE error nmessage, indicating
that you nust specify the library and drive |ocation explicitly.
The o_bLect record automatically specifies the LI NK-86 SEARCH opti on
for library files. Therefore,” LINK-86 only |inks nodul es fromthe
systemlibrary that are referenced i n PROGRAM C W t hout t he SEARCH
option, LINK-86 links in the entire system library, making the
executabl e program unnecessarily large. The preceding exanple
creates an executabl e program naned PROGRAM CMD.

To link nultiple object files and |ibraries, you nust specify each
filename explicitly after the -A, including the name of the object
file that the conpiler creates. Use conmas to separate each
filespec after the -A in the command line. The follow ng exanple
conpil es the program nanmed PROGRAM C, then links the object file
that the conpiler creates with an object file named PROGTWQ OBJ and
the smal|l nodel system library. Notice that you do not have to
specify the .0BJ filetype explicitly for the object files after the
-A

B>DRC PROGRAM =APROGRAM ,PROGTWO

The next exanple is identical tothe first exanple, except the snall
model systemlibrary is on the Ddrive. Notice that you nust specify

C Language Programmer's Guide 2.1 Conpiler Operation

the object file that the conpiler creates explicitly after the -A
whenever you have additional explicit filespecs.

B>DRC PROGRAM - APROGRAM D CLEARL. L86[]

Remenber, in this case, you nust specify the object file that the
compiler creates, the library file drive location, the library
filenanme, and the LINK-86 SEARCH option explicitly.

The | ast exanple is exactly the same as the first exanple, except
LINK-86 is on drive D In this case, the systemlibrary is on the
default drive. You do not have to specify the object file and
library file explicitly.

B>DRC PROGRAM - A - 3D

Renenber, a conpiler command |ine cannot exceed 128 characters.

-b option

The -b option switch enabl es conpilation according to the big menory
model. (Refer to Section 2.4 for a description of nemory nodels.)
For exanpl e, the foll owi ng conmand | i ne conpi | es PROGRAM C accor di ng
to the big nodel:

B>DRC PROGRAM - B

The conpiler creates the object file with the sanme filename as the
i nput source file, but with an .0BJ filetype. This is the default
object file naming convention. In this exanple, the filenanme is
PROGRAM You shoul d rename PROGRAM OBJ to better identify the file
as a big nodel object file. A nane such as PROGBIG OBJ is easier to
identify. Alternatively, you can use the -o option to renane the
object file at conpile tine as shown in the foll owing exanpl e:

B>DRC PROGRAM - OPROGBI G OBJ - B

-d option
The -d option switch works like a #define in the source code.
However , any name that you specify after the -d in the command |ine
equates to the value 1. For exanple, the follow ng command |ine
directs the conpiler to equate the nane factor with the value 1 in
the source file PROGRAM C

B>DRC PROGRAM - Df act or

The next exanpl e directs the conpiler to equate the nane ref_22 with
the value 1 in the source file PROGRAM C

B>DRC PROGRAM - Dref _22

2-6

C Language Programmer's Cuide 2.1 Conpiler Operation

-f option

The -f option switch directs the c_orrﬁi ler touse the Intel 8087 nath
coproizessor for floating-point arithmetic as shown in the follow ng
exanpl e:

B>DRC PROGRAM =F

You nust have the 8087 microprocessor to use the -f option. [If you
do not specify -f, the conpiler calls routines inthe systemlibrary
for floating-point math, |f you execute a programconpiled with the
-f optionon a conputer that does not have an 8087 math coprocessor,
the program does not execute properly.

-h option

The -h option switch directs the conpiler to suppress the standard
conpi | er si gn-on banner and ot her conpi | er modul e si gn-on mMessages.
The conpiler supervisory nodule, DRC CMVD, displays the sign-on
banner by default, Following the banner, the preprocessor and
parser/ code generator nodul es display their sign-on nessages by
default as shown bel ow. Sign-on banners mght differ slightly for
different versions of the conpiler. The nenory allocation message
appears | ast. Wen you specify -h, the conpiler only displays the
nmenory all ocati on nessage.

Digital Research C % : Vérsi on X X
Serial No. XXX XXXX= XXXXXX Al Rights Reserved
Copyright (c) 1983 Di gital Research, Inc.

Di gital Research C Version X X —=Preprocessor

Digital Research C Version X X —=Code Gen

test. c: code: 350 static: 695 extern: 36
The following command |ine exanple directs the conpiler not to
di splay the sign-on banner or nodul e sign-on messages during the
conpi | ati on of "PROGRAM C. The conpiler only displays the nemory
al l ocati on message.

B>DRC PROGRAM =H

=7

C Language Progranmmer's Qui de 2.1 Conpiler Operation

-i option

The -i optionswitch directs the conpiler to search a specified disk
drivefor #include files. #includefiles facilitate the handling of
decl arations and groups of fdefine definitions. You specify
finclude files with the #include directive. Refer to Chapter 4.11,
"The C Preprocessor," in The C Programming Language for nore
information on file inclusion. The folTow ng exanple directs the
conpiler to search drive C for finclude files specified in
PROGRAM C

B>DRC PROGRAM -1 C

-j option

The -j option switch directs the conpiler to disable the short/long
junp optimzer. The junp optimzer converts |ong program branches
to short branches wherever possible inthe program Theresult is a
smal | er object file, If you disable the junp optinizer, the result
is faster conpilation, but a bigger object file. The followng
exanpl e disables the junp optimizer for the conpilation of
PROGRAM C

B>DRC PROGRAM -J

-1 option

The -1 option switch directs the conpiler to generate a listing of
t he source pro%ram The preprocessor nodul e, DRC360. CMD, actual |y
generates the listing. You can specify a device nanme to which to
send the listing. The conpiler sends the listing to the console
(CON) by default. The follow ng exanple directs the conpiler to
send the listing to the printer (LST:).

B>DRC PROGRAM - LLST:

-n _option

The -n option switch directs the conpiler to disable the code
optim zer as shown in the follow ng exanpl e

B>DRC PROGRAM - N

If you use the -n option, the result is faster conpilation, but a
bi gger object file.

C Language Programer's Quide 2.1 Conpiler Operation

-0 option

Use the =0 option switch to specify a name for the object file the
conpiler creates. The conpiler creates the object file with the
sanme filename as the input source file, but with an.OBJ filetype.
This is the default object file namng convention. The follow ng
command | i ne exanpl e conpi | es PROGRAM C and renanes the object file
ONE. OBJ.

B>DRC PROGRAM - OONE. OBJ
-p option
The -p option switch directs the conpiler to only execute the

preprocessor nodul e, DRC860.CMVD. The preprocessor creates a
tenporary work file named CTEMP, TOK. | f you use the =p option, the
conpi l er “stops after executing the preprocessor nodule and |eaves
CTEMP. TOK on disk. The reverse preprocessor program DRCRPP. C\VD,
accepts the data in CTEMP. TOK as input and generates a nodified
version of your original input source file. efer to Section 2.3
for additional information on the reverse preprocessor. The
fol | owi ng exanpl e executes the preprocessor and creates CTEMP. TOK
for PROGRAM C

B>DRC PROGRAM C -P

-g option

Use the -q option switch to set the nunber of code generator nodes
for optimzation. Nodes are the pieces of data the code generator
uses to build assenmbly instructions. The code optinizer works on
groups of nodes. You can set the size of these node groups.

The default number of code generator nodes is 500. Use a smaller
nunber of nodes to save space in the synbol table. The mi ninum
value is 100, Use a larger nunber of nodes to optimze |arger
portions of code. The follow ng exanple sets the nunber of code
generator nodes for PROGRAMC to 1000. A value of 1000 actually
provi des nmexi mum opti m zati on.

B>DRC PROGRAM - QLO0O

C Language Programer's Quide 2.1 Conpiler Operation

-=f option

The -r option directs the conpiler to generate a program
interlisting. An interlisting is a conbination of the source code
lines fromyour C programand the conpil er-generated assenbly code.
DRC862. CMD1s the listing disassenbly file merge utility nodule. It
nerges the listing and disassenbly files together for a conplete
interlist display when you use the -r option.

The listing file contains the source code |ines fromyour C program
The di sassenbly fil e contains conpil er generated assenbly code. The
assenbly code the conpiler generates is only an approximation of
8086/ 88 assenbly code. It is provided for debuggi ng purposes only.

If DRC862.CMD is not on-line during conpilation, the interlist
option is ineffective and the conpiler outputs the listing and
di sassenbly files separately. You can use the -2 option switch to
specify a drive other than the default drive for DRC862. CVD.

Fol | owi ng conpi l ation, the |linkage editor requires one of the system
library files to create the executable program The library files
do not have to be on-line during conpilation.

You can specify a device name to which to send the interlisting.
The conpiler sends the interlisting to the console (CON) by
default. The followi ng exanple directs the conpiler to generate an
interlisting and sends it to the printer (LST:).

B>DRC PROGRAM - RLST:

-v option

The conpiler can produce a variety of nessages other than sign-on
and error nmessages to provi de general conpilationinformationandto
i ndi cate di fferent stages of conpilation. Use the -v option to set
the conpiler information message display |evel. Specify the -v as
the first option switch in a command line. The -v option does not
affect the display of sign-on and error nessages.

You can specify a nunber ranging from1l to 5 after the -v to sel ect
the various types of information message display. [If you do not
specify a nunber as shown in the follow ng exanple, the conpiler
assunmes -vl and displays only general information messages:

B>DRC PROGRAM -V

General information includes messages such as "Usi ng program obj as
output file" and nmessages relating to other option switches. This
is why you nust specify the -v as the first option switch in a
command |ine. The -v nust be able to read the rest of the command
line to display the appropriate nmessages. The -v paraneters 1
through 5 produce the followi ng conpiler information nessages:

2-10

C Language Programer's Gui de 2.1 Conpiler Operation

-vl Display general information nessages only.

=v2 Display a# character as conpiler processes each functi on.
-v3 Display functionname as conpi |l er processes each functi on,
-v4 Display start/end nessages for include files.

-v5 Dis Ila_y filename and |ine nunber as conpiler processes
each line.

Each -v parameter except -v2 and -v3 operates in a hierarchical
f ashi on. In other words, when you specify =v2, the conpiler
automatically activates -vl, and so on. However, the -v2 and -v3
switches are nutual |y exclusive. Wen you specify -v3, the conpiler
automatically activates -vl but not -v2. Note that when you specify
-v4 or -v5, the conpiler activates the -v3 switch and not -v2. For
exanple, the following conmand line directs the conpiler to display
al | messages corresponding to -v5, -v4, -v3, and -vl switches:

B>DRC PROGRAM - V5

=W option

Use the =w option switch to set the conpiler error message displ ay
level. Conpiler error messages can be divided into two different
categories: error reports and error warnings. Error reports
i ndi cate m stakes in your source program such as syntax errors and
i mproper data type specifications, Error warnings effectively
indicate that some error can occur if you do not take sone
corrective action. Refer to Section 2.1.5 for additional
i nformation on error nmessages.

You can specify a nunber ranging fromO to 2 after the -wto sel ect
the display | evel. The paraneters 0 through 2 produce the foll owi ng
results:

-wO Display all error nessages.
-wW Suppress error warning nessages.
-W2 Suppress all error messages.

For exanple, the following conmand |ine directs the conpiler to
di splay only error reports:

B>DRC PROGRAM - W

C Language Programmer's Quide 2.1 Conpiler Operation

-X option

Use the -x option with the small nmenory nodel to call special
assenbly routines from the systemlibrary that save and restore
regi sters for interfacing C nodul es and assenbly routines. You
cannot access these routines explicitly froma program |f you do
not use -x or if you use the big nenory nodel, the conpiler
generates code to save and restore registersin-line. Using -x with
the smal | nodel, your programis slightly smaller but runs alittle
more slowy. Refer to Section 5 for nore’informationon interfacing
assembly routines with C nmodules, The following conmand |ine
exanpl e calls the special assenbly routines to save and restore
registers in PROGRAM C

B>DRC PROGRAM - X

-z option

Duri ng conpil ation, the conpiler creates tenporary work files named
CTEMP. TOK and COBJ. TMP. | f you do not have enough work space on
disk for the tenporare/ files, you can use the -z option swtch to
pl ace themon a specified disk drive. You specify the drive after
the -z in the command Iine. The conpiler erases the files
automatical |y when conpilation is finished. The follow ng exanple

directs the conpiler to place the tenporary files on the D drive.

B>DRC PROGRAM - ZD

-0 option

Use the -0 option switch to specify a drive other than the default
drive for the conpiler preprocessor nodul e, DRG360. CMD. Thi s opti on
is handy if you do not have enough room on one disk for all the
conpi | er nodul es. The following exanple informs the conpiler
supervi sory nodul e that the preprocessor is on the FE drive.

B>DRC PROGRAM - CF

-1 option

Use the -1 option switch to specify a drive other than the defaul t
drive for the conpiler parser and code generator nodul e, DRC861. CMD.
This option i s handy if you do not have enough roomon one disk for
all the conpiler nodules. The follow ng exanmple informs the
conpi l er supervisory nodule that the parser and code generator
module is on the D drive.

B>DRC PROGRAM - | D

Note that the conpiler wites the tenporary files on the default
drive unl ess you specify otherwise, using the -z option swtch.

C Language Programmer' s Gui de 2.1 Conpiler Qperation

-2 option

Use the -2 option switch in conjunctionwith -r to specify a drive
other than the default drive for the conpiler listing/disassenbly
file merge utility, DRC862.CMD. This option is handy if you do not
have enough room on one disk for all the conpiler nodules, The
following exanple directs the conpiler to generate a program
interlisting and informs the conpiler supervisory nodule that the
listing/disassenbly file nmerge utility 1s on the C drive. The
conpiler sends the interlisting to the console (CON) by default.

B>DRC PROCGRAM - R - 2C

=3 option

Use the -3 option switch in conjunction with -a to specify a drive
other than the default drive for the link editor, LINK86. CMD. This
optionis handy if you do not have enough roomon one di sk for both
the conpiler and link editor. The follow ng command |ine exanple
autonatically invokes LINK-86 after conpilation, but inforns the
conpiler that LINK-86 is on the D drive.

B>DRC PROGRAM - APROGRAM - 3D

2.1.4 Menory Allocation Data

At the end of conpilation, the conpiler displays a single message
that indicates the ampunt of menory used for certain menory areas.
The nessage appears as shown bel ow

| fil ename:] code: nnnn static: nnnn extern: nnnn

The filenane is the nanme of the input source file, The three
nunbers represented in the preceding exanple by nnnn are deci nal
val ues that indicate the nunber of bytes used for each nenory area
The static area includes all variables specifically declared as
static and all literal character strings. The external area
includes all variables declared explicitly or inplicitly external.

2.1L5 FError Messages

Conpiler error nessages can be divided into two different
cat egori es: error reports and error warnings. Error reports
i ndicate mistakes in your source program such as syntax errors and
i mproper data type specifications, Error reports i ncl ude nessages,
such as nunber 52, "Right parenthesis) is mssing" and nunber 7,
"Conflicting data type specified for a function. "

2-13

C Language Programer's Cui de 2.1 Conpiler Operation

Error warnings effectively indicate that an error can occur if you
do not take SOMe corrective action For exanple, error message 83
is a warning that suggests caution using the i ndi rection operator
\fMItIh integers. Error message 83, listed in Appendi x C, reads as
ol | ows:

83 WARNING I ndirection for non-pointers is not
portabl e.

I ntegers can be i ndirected successfullyin
Digital Research C(small nodel only) and
PDP-11 C Indirection is not portable.
This i s an ERROR WARNI NG nessage.

I'f your program uses the indirection operator with integers and is
configured according to the big menory nmodel , an error can occur.
Some war ni ngs, such as nunber 95, "WARNING = Subscript is truncat ed
toshort int," sinply informyou of acertain activity t aki ng pl ace
during conpilation.

Each conpi | er error nmessage corresponds to an assi gned error number.
Refer to Appendix C for a sunmary of error mnmessages listed in
numeri cal order. Appendix C also provi des suggestions on how to
correct certain errors.

{he conpi | er displays both types of error messages inthe foll ow ng
ormat:

filenanme: line number: Error nunber: nessage text

The filenanme i s the name of your input source file. The line number
i ndi cates which linein the source programcontains the error. The
number that fol | ows the word Error in the message corresponds to the
assi gned error nessage number |isted in Appendix C The nessage
text is aliteral description of the error. The message text does

not display if the DRGCERR file is not on-line during conpi | ation.

You can use conpiler option switch -wto change the error nessage
display level. You can have the conpiler display all nessages,
suppress only the warni ng messages, or suppress al | messages. Refer
to Section 2.1 3, concerning the use of conpiler option switches.

The C conpiler detects a maxinum of 10 errors, then aborts
conpil ation. The conpiler only displays one error nessage for each
source code |ine. The conpiler counts multipleerrors inonesource
line as a single error.

2-14

C Language Progranmer's Guide 2.2 Start-up Routines

2.2 Start-up Routines and Stand-al one Prograns

A start-up routine controls the execution of a program It sets up
t he operating environnment for programexecution by initializing the
stack poi nter, segnent registers, and heap. The start-up routine is
contained in the system library and linked into the executable
program automatical [y.

The standard start-up routine in the systemlibrary i s naned _START.

START sets up the operating environnent to execute a program under
CP/ M 86. After setting up the environment, START calls the
programi's "main" routine for execution. The mainroutine inall C
programs is a function nanmed main(). The "min" routine returns
confrol to _START at the conclusion of execution Lastly, _START
cleans up the environment by flushing buffers, closing files,
freeing storage, and returning control to the operating system

The source file named STARTUP. A86 on one of your C product disks is
an exanple of a start-up routine witten in assenbly Ianguage.
Study STARTUP. A86 to |earn nore about start-up routines.

You can also conpile and link progranms intended for stand-al one
execution. Stand-al one progranms do not use the support services of
an operating system but interface directly with the system
hardware. 1n other words, a stand-alone programis a systens |evel
program such as an operating system

A stand- al one program accesses certain machi ne support subroutines
in the system library, such as the long divide and long shift
routines. You cannot access machi ne support subroutines explicitly.
The compil er generates code to access theminplicitly.

To creat e an execut abl e st and- al one program obj ect nodul es creat ed
with the C conpiler nust be linked with the appropriate system
library and a start-up routine that sets up the desired target
operating environment. The START nodule in the systemlibrary sets
up the operating environment for CP/M86. You nmust wite a new
start-up routine for your newtarget environment. Wen linking the
program your new start-up routine modul e nust appear first in the
LI NK-86 command line. As a result, LINK-86 does not link in the
standard START that is contained in the systemlibrary.

LI NK-86 produces an .CMD file that is executable in your desired
target environment. The followi ng LINK-86 command |ine exanple
creates a stand-al one erogram named PROG from the object nodul es
MODI. OBJ, MOD2. OBJ, and MOD3.0BJ. The file STARTUP1. OBJ contains
the start-up routine, _START, specially witten for the target
environment. LI NK-86 searches the default drive automatically for
the proper systemlibrary.

B>LI NK86 PROG=STARTUPI, MODI , MDD2, MOD3

2-15

C Language Programer's Qui de 2.2 Start-up Routines

Note that the start-up nodul e nust appear first in the LINK-86
command line. The systemlibrary nust always appear after the new
start-up nodule in the command line if the system library is
specified explicitly. The object nodul es can appear in any order.

You can specify a different drive location for the systemlibraryin
the link conmand |line. The follow ng exanple |links the three object
modul es with the big nodel library. The library is on the d drive.

B>LI NK86 PROG=STARTUP1, MODI, MOD2, MDDS, d: CLEARL. L86[9]

The LINK-86 search option, [S], after the library specification
selects only the routines from the library that the program
requires. |f you omt the search option, LINK-86 |inks the entire
library into the .CVMD file, meking the executable program
unnecessarily large. You can use the LINK-86 MAP option to nmake
sure the proper routines are |oaded from CLEAR See Section 7 of
the Programmer's Utilities Guide for nore information on LI NK-86.

2.3 Reverse Preprocessor Operation

The reverse preprocessor program DRCRPP. CMD, is useful to deternine
how the conpiler's preprocessor nodul e, DRC860. CVD, handl es nacro
i nstruction expansions. This can be handy when the conpiler reports
confusing error messages pertaining to nmacros.

The preprocessor nodule creates a tenmporary work file during
conpi | ati on named CTEMP. TOK. | f you use the -p conpiler option, the
conpil er stops after executing the preprocessor nodul e and | eaves
CTEMP. TOK on disk. The reverse preprocessor program accepts the
data in CTEMP. TOK as i nput and generates a nodified version of your
original conpiler input file. The reverse preprocessor incorporates
all tinclude files and expands all nmacro instructions to generate
the nodified file. Use the following conmand line to invoke the
reverse preprocessor:

B>DRCRPP <CTEMP. TOK
The < character specifies that the input for the reverse

preprocessor program comes from the CTEMP. TOK file. Refer to
Section 4.4 for information on input/output redirection.

2-16

C Language Programer's Qui de 2.4 Menory Model s

2.4 Menory Mbdel s

The 8086/ 8088 ni croprocessor can address up to one nillion bytes of
menmory. Each address in nmenory points to one of three different
menory areas: program code, data, or stack. For each of the
menory areas, the 8086/ 8088 has a segnent base register that points
to the base address of the corresponding area in nenory.

e The code segment register (CS) points to the base of the
progr am code.

e The data segnment register (DS points to the base of an
avail abl e data area.

e The stack segnent register (SS points to the base of the stack
ar ea.

® The extra segment register (ES) points to the base of another
area, nost often the heap.

Cprograns can have varying anounts of code, data, stack, and heap.
Menory nodel s determine the size of the different areas and the
initial values for segment registers. For exanple, a nenory nodel
called the smal | nodel supports separate code and dat a segnents each
limted to 64K bytes. The Cconpiler supports two different menory
model s providing a wide range of programconfigurations that take
full advantage of the 8086/8088 m croprocessor architecture.

e snall
e big

For a nore conpl ete understandi ng of menory nodels, read Section 7
inthe Programmer's Utilities GQuide on LINK-86 first. Section 7.5
inthe utilities gui de explains how LI NK-86 conbi nes the different
program segments into groups and positions themin the executable
.CMD file. Section 7.5.2 in the Programmer's Utilities Guide
defines the terns CGROUP (code group) and DGROUP (data group).

2-17

C Language Programrer's Qui de 2.4 Menory Model s

2.4.1 Small Menory Model

The C conpiler conpiles all programs according to the small menmory
nmodel by default. The small npdel defines a separate code group
(CGROUP) and data group (DGROUP). Neither group can exceed 64K
byt es. The C conpiler automatically generates the group nanes
CGROUP and DGROUP. For assenbly | anguage nodul es, use the RASM 86
GROUP directive to place segments into the proper group. Refer to
Section 3.3, "The GROUP Directive," in the Programmer's Uilities
Qui de for more information.

LI NK-86 places all segments belonging to the CGROUP in the code
section of the .CMDfile and all segnents bel onging to the DGROUP i n
the data section of the.CVMDfile. Al data segnments, including all
common segrents allocated with external variables are |ocated
together in|low nmenory within the DGROUP, as shown in Figure 2-1. A
dynamically allocated data area called the heap grows up in nmenory
towards the stack., The heap is positioned on top of the data
segnents. The stack grows from the top of the data section down
towards the heap.

MEMORY
H GH STACK (GROWS DOWN)
DGROUP
HEAP (GROWS UP
(up) (64K MAX.)
DATA
ES, SS
Low & DS -
H GH
o CGROUP
(64K MAX.)
LOwW cS —»

Figure 2-1. Small Menory Mdel

2-18

C Language Programer's Cui de 2.4 Menory Model s

2.4.2 Big Menory Model

Use the big nodel for programs that use a mexi mum of 64K bytes of
data, a maxi num of 64K bytes of stack, but require a large code
section and heap. To specify big nodel conpilation, use the -b
command |ine conpiler option. Al programdata segnents including
all common segnents allocated with external variables are |ocated
together within the DGROUP (data group), as shown in Figure 2-2,

The conpiler does not group code segments in the CGROUP (code
group). Al program code segnents are separate segments wth a
uni que nane. No individual code segment can exceed 64K bytes. The
total anmount of code is linmted to the anount of avail able nmenory.
Do not use the RASM 86 GROUP directive to place code segments for an
assembly programinto the CGROUP as you would for the small nodel.
All code nust occupy separate segments with a unique nane.

The stack occupies a separate segnent |imited to 64K The initial
size of the stack is determined in the run-time start-up routine.
The final stack size can be adjusted at |ink time using the LI NK-86
command line options. The heap data occupies the extra segnent.
The heap size is linmted only by the anpunt of available memory and
is adjustable at |ink tine.

MEMORY
HIGH MAXIMUM
HEAP (GROWS UP) AVAILABLE
MEMORY
LOW ES —»
HIGH
STACK (GROWS DOWN) (64K MAX.)
LOW SS —»
HIGH
DATA SEGMENTS DGROUP
(64K MAX.)
LOW DS —=
HIGH
CODE SEGMENT
MAXIMUM
CODE SEGMENT AVAILABLE
MEMORY

CODE SEGMENT

LOW CS —~

Figure 2-2. Big Menory Model

C Language Programer's Cui de 2.5 TEST.C

2.5 Conpiling, Linking, and Running TEST. C

The TEST. C program on your C product disks serves two purposes.
First, TEST. Cis a C | anguage source programthat denonstrates how

to conpile, link, and run a program in greater detail than the
sinpl e denonstration in Section 1. Second, the programtests the
conpiler, linker, and libraries with sinple math routines to ensure

proper functioning of each conponent.

Be sure to make a copy of your C product and programmer's utilities
disks. Store the original product disks in a safe place. You
shoul d al ready be famliar with your operating systemand file copy
program The follow ng instructions are for a C M 86-based system
with two floppy-disk drives.

1) Create a C work disk.

Using a file copy program such as PIP, create a C work
disk that contains the five conpiler files, the |inkage
editor, the big nodel subroutine library, and TEST. C If
you do not have enough roomon disk for all the files, you
can place the linkage editor and library on a separate
di sk. Your work disk or disks should contain all the
following files:

e DRC CVD conpi |l er supervisory nodul e

e DRC360. CMD preprocessor

e DRC36L CMD parser and code generat or

e DRC862 CMD listing/disassenbly file nerge utility
e R C\VD program | oader utility

e DRC ERR conpi l er error nessages

® LINK86.CVMD |inkage editor

e CLEARL.L86 big nodel systemlibrary

e TEST.C sanpl e program

Wth your operating systemdisk in drive A, place your new
C work disk that contains TEST.Cin drive B

2) Conpile TEST. C

This conpilation of TEST.C denonstrates the -b, -0, and -v
conpi l er options. Enter the follow ng command. Be sure
drive B is the default drive.

B>DRC TEST -V3 -B -OTESTBI G OBJ

Note that you nust place at |east one space between each
option switch specification in the command line. The -b
option switch directs the conpiler to conpile TEST.C
according to the big nenory nodel. The -v3 option switch
tells the conpiler to display the nane of each program

2-20

C Language Programmrer's Cui de 2.5 TEST.C

nodul e and function as the conpiler processes it,
Renenber, -v3 automatical ly activates -=vl. Therefore, the
conpiler also displays general information nessages.

However, =v2 and =v3 are nutually exclusive. Refer to
Section 2.1.3 for nore information on option switches. The
-0 option tells the conpiler to name the object file
TESTBIG OBJ to better identify the file as a big nodel
object file.

Note that you do not have to specify the .Cfiletyﬁ)e for
the source programexplicitly in the command |ine. f you
do not specify a filetype, the conmpiler first searches for
thefilenane with no filetype. |f the conpiler cannot find
the filename with no filetype, it automatically searches
for that filename with a .C filetype. If the conpiler
cannot find the filename with a.Cfiletype, it prints the
message "Unable to open filename.C for output."

The fol | owi ng out put shoul d appear on your terninal Screemn

Di gital Research C ~ Version X X
Serial No. XXXX- XXXX=- XXXXXX Al Rights Reserved
Copyright (c) 1983 Digital Research, Inc.

Digital Research C Version X X ==Preprocessor

Bi g Conput ation Mbdel enabl ed
Using test.obj as output file

Di gital Research C Version X X ==Code Cen

Processi ng: main

test. C: code: 350 static: 695 extern: 36
B>

The conpiler displays the sign-on banner first, During
processing, the preprocessor and the parser/code generator
nodul es display their sign-on nessages indicating
executi on, The compiler displays general information
messages and the name of each nodul e and function processed
in the TEST.C program as requested with the -v3 option
switch., In the preceding display, "Big Conputation Mdel

enabl ed" and "Using test,obj as output file" are general
informati on messages. "Processing: main" indicates that
there is only one function in TEST.C named "main. " The
menmory allocation message appears |ast, Section 2.1.4

describes the different parts of the menory allocation

2-21

C Language Programrer's Qui de 2.5 TEST.C

3)

nessage. |If you get no error messages, TEST.C has been
conpil ed successfully. Section 2.1.5 explains error
nessages.

The conpiler creates the relocatabl e object program nanmed
TESTBI G OBJ according to the big menory nodel. [If you are
using two separate work disks, copy TESTBI G OBJ onto the
di sk that contains LINK-86 and the big nodel l|ibrary.

Li nki ng TEST. OBJ

The conpiler creates a special object record in
TESTBI G OBJ. The record contains information that tells
LI NK-86 which system library to search for any required
routines. LINK-86 searches the library autonatically if
the library is on the default drive, as it is in this
exarmple. Enter the following command. Be sure drive Bis
the default drive.

B>LI NK86 TESTBI G

LI NK- 86 assunes a . OBJ filetype for the object files in the
command line unless you specify otherwise, A sign-on
banner and some menory ‘al |l ocation messages di spl a?/ on your
terminal as shown below, The values in the allocation
messages might vary for progranms conpiled with different
versions of the C conpiler.

LI NK86 Li nkage Editor ~ Version X XX
Serial No. XXXX- XXXX- XXXXXX Al Rights Reserved
Copyright (c) 1982,1983 Digital Research, Inc.
CODE 03E38

DATA 010A8

USE FACTOR 07%

B>

If you get no error messages, the program has been |inked
successful ly, LI NK-86 creates the directly executable
program, A directory for disk B should have the new
command file TESTBI G CVD.

If the systemlibrary is not on the default drive, LINK-86
di splays the NO FILE error nmessage, indicating that you
nust specify the appropriate drive explicitly in the |ink
conmand line. For exanple, the followi ng command |ine
i nlés TESTBIG OBJ with the big nodel systemlibrary on the
D drive.

2- 22

C Language Programmer's QGuide 2.5 TEST.C

4)

B>LI NK86 TESTBI G, D CLEARL L86[

The SEARCH option, [S], after the library name, tells
LINK-86 to select only the routines fromthe library that
the programrequires. |f you onit the SEARCH option, LI NK-
86 links the entire librafy intothe .CMD file, making the
execut abl e program unnecessarily |arge.

A LINK-86 command line input file is handy if you want to
avoid having to type a long, conplicated command |ine over
and over. Command line input files work with the LINK-86
I NPUT option. Refer to Section 7.11, "Command Input File
Options," in the Programmer's Utilities Guide for nore
i nfornati on.

Runni ng TESTBI G CVD

To execute TESTBI G CMD, enter the following conmand. Be
sure drive B is the default drive. Notice that you do not
have to specify the .CVD filetype explicitly for
TESTBI G CVD.

B>TESTBI G

The fol | owi ng output should appear on your termnal.

**

B VELCOVE TO DI Gl TAL RESEARCH C e
* % *

** This sanple programtests the C conpiler, **
** |inker, and Fi braries. |f the nunber in **
** parentheses matches the nunber to the i
** inmediate |eft, each component is working **
** properly. &

**

Test int math: 4567 * 10 = 45670 (45670)

Test long int math: 1234 * 4567 = 5635678 (5635678)

Test fl oat math: 1.234 + 0.001 = 1.235 (1.235)

Test double math: 5635678.0 / 1234.0 = 4567.0 (4567.0)

Good Luck!
B>

You can conpile, link, and run the TEST.C program according to
either of the two memory nodels: small or big. Be sure to specify
adifferent object filename to distinguish one nodel from another.
You can use the -o conpiler option to nane the object file during
conpi | ati on.

2- 23

C Language Programmer's Gui de 2.5 TEST.C

If your C software does not operate correctly, check the system
requirements listed in Section 1.1 and the run-time requirenents
listed in Section 1.2. Mke sure your equipnent conplies with the
speci fied guidelines.

If you still cannot get your software to operate correctly, fill out
the Sof t war e Per f or mance Report included I n your C product package.

Describe your problemin detail and mail the report to the Digital
Research Techni cal Support Center. A pronpt reply will follow

End of Section 2

2= 24

Section 3
C System Library

The run-tine subroutine library for use with the Digital Research C
system is called CLEAR CLEAR stands for Comon Language
Envi ronment And Run-time. CLEAR is a collection of subroutines for
i nput/ out put, dynamic nemory allocation, system traps, and data
conversion. CLEAR is configured for both 8086/ 8088 menory nodel s:
smal, and big. Refer to Section 2.4 for a description of menory
nodel s.

e CLEARS L86 gsrrall nodel version)
® CLEARL. L86 (big nodel version)

Both CLEAR library files are on your C product disks.

3.1 UNI X V7 Conmpatibility

The CLEAR systemlibrary is conpatible wth UNI X Version 7, allow ng
programs to nove easily between UNIX and CP/ M86. The system
l'ibrary sinmulates many UNI X operating systemcalls and features.

I-Io\llvelzver, CLEAR does not support the followi ng UNI X operating system
cal | s:

e the fork/exec, kill, lock, nice, pause, ptrace, sync, and wait
primtives
e the acct systemcall

e thealarmfunction, or the stime, time, ftime, and tines system
calls

e the dup and dup2 duplicate file descriptor functions

e the getuid, getgid, geteuid, getegid, setuid, and setgid
functions

e the indir indirect systemcall
e the ioctl, stty, and gtty systemcalls
e the link systemcall

e the chdir, chroot, nknod, nount, unount, mpx, pipe, pkon,
pkoff, profil, sync, stat, fstat, umask, and utime systemcalls

e the phys system call

C Language Programer's Qui de 3.1 UNIX V7 Conpatibility

The following UNIX library functions are not available in C for
CP/ M 86:

assert

crypt

DBM

get env

getgrent, getlogin, getpw, and getpwent functions
13tol, Itol3

noni t or

i}pn} madd, nsub, nult, ndiv, nin, nout, pow, gcd, and rpow
nlis

propen, pkcl ose, pkread, pkwite, and pkfai

pl ot

popen, pclose

si gnal

sl eep

system

ttysl ot

Entry points have been added to file open and creat calls to
di stingui sh between ASCI| and binary files.

3.2 SystemlLibrary Routines

This section presents the systemlibrary subroutines that you can
reference explicitly in a C program Subroutines in the system
library that have one or two underscores preceding the function nane
or that have the function nane incapital letters are not accessible
directly. They are designed for access internally by other
functions in the library.

The remainder of this section al phabetically lists and explains C

| anguage functions. Each expl anation denonstrates proper use of the
function with four categories of information

1) Declarations: exanples of proper variable type and storage
cl ass decl arations

2) Calling Syntax: the proper format used to reference the
function

3) Argunents: a description of the different paraneters
encl osed in parentheses that follow each function name

4) Returns: a description of what each function returns

In certain cases, a function may not return a val ue

C Language Programmer's CQuide 3.2 SystemlLibrary Routines

The declarations in this section use standard C type and storage
class specifiers, However, the file PORTAB.H contains a set of
vari abl e type declaration keywords (Table 3-1) and storage cl ass
decl arati on keywords (Table 3-2) that you can use to ensure
consistent internal representation of data types across different
pr ocessors.

Decl arati on keywords in PORTAB.H are macro definitions specified
with #define. = Using standard type specifiers can be unsafe in
progranms designed to be portable because of variations in internal
representation among different conpilers. For exanple, an integer
declared with the keyword int m ght be 16-bits [ong on one processor
and 32-bits on a different processor. However, an integer declared
with the macro WORD is 16-bits on any processor. The standard I/O
file STD10. H al ready i ncl udes PORTAB.H Therefore, if your program
does not include STDIQH, you must include PORTAB.H explicitly to
use the macros shown in Tables 3-1 and 3-2

The specifier FILE used in this section is defined in STDIQ H
Refer to Chapter 7.6, "File Access," in The C Progranm ng Language
for additional information.

Refer to Chapter 4.11, "The C Preprocessor," in The C Progranm ng
Language for nore information on file inclusion and Nacro
substitution. The follow ng tables show the portability macros for
vari abl e types and storage classes defined in PORTAB H

Table 3-1. Variable Type Macro Definitions

Macr o St andard Type

LONG signed |ong (32 bits)
V\ORD signed short (int) 516 bi tsg
UAORD unsi gned short (int) 16 bits
BOOLEAN short (int) 216 bi t s)
BYTE signed char 8 hits)
UBYTE unsi gned char 8 bits)
DEFAULT i nt 16 bits)
va D void (function return)

Tabl e 3-2. Storage O ass Macro Definitions

Macr o Standard d ass
REG regi ster variable
LOCAL auto variable
M_OCAL nmodul e static variable
G.OBAL gl obal variable definition
EXTERN gl obal variable reference

C Language Programmer's Quide 3.2 SystemlLibrary Routines

Identifiers in Ccan use both uppercase and |owercase characters.
However , you nust type all library function nanes In | ower case, as
shown in the calling syntax portion of each function explanation.

Wth sone care, you can make direct calls to the operating system
froma C program with the BDOS routine. The routine USES two
argunents as shown in the follow ng syntax diagram

ret = BDOS (argl, arg2

The first argument is the BDOS function nunber as defined in the
operating system The first argument has an integer data type. The
second argunent depends on which BDOS function you call. The data
t%pe for the second argunent varies dependi ng on the requirenents of
the specific function call.

The __BDOS function returns a val ue of character data type. |f your
program requires a return value other than a character, you nust
write your own assenbly |anguage routine that interfaces with the
operating systemto make the change. Refer to your operating system
programmer'’s guide for a description of BDOS funct ion calls.

C Language Programer's Qui de abs Function

abs Function

The abs function returns the absolute value of a nunber, The abs
functionis inplemented as a macro in STDIQH Therefore, argunments
that involve side effects m ght not work as expected and shoul d not
be used. For instance, a call to abs that uses the ++ operator in
the argument increments the argunent value twice. a = abs(*x++)
increments the value x twice, Do not declare functions that are
i npl enented as nacr oS,

Decl ar ati ons:
int val;

int ret; /* can be any type */

Cal Iing Syntax:

ret = abs(val);

Ar gunent s:

val =t he input value can be any nunber

Ret ur ns:

ret -- the absolute value of val, can be any type

C Language Programmer’s Cui de access Function

access Function

The access function checks whet her the cal ling programcan access a
specified file. Under CP/ M 86, the fileis accessible if it exists,

Decl ar ati ons:
char ¢ nane

int node;
int ret, access();

Cal | i ng Synt ax:

ret = access(nanme, node);

Argunents;
name —points to a null-termnated fil ename
mode -- can be one of four val ues:
4 checks read access
2 checks wite access
1 checks execute access
0 checks directory path access

CP/ M 86 ignores a node value of 0O

Ret ur ns:

ret -=- O if file access is allowed or -1 if not allowed

Note CP/M86 checks to see if the specified file exists

3-6

C Language Programer's Quide atoi, atof, atol Functions

atoi, atof, atol Functions

The atoi, atof, and atol functions convert an ASCI| digit stringto
an integer, float, or long binary nunber, respectively. The
conpiler ignores all |eading spaces, but cPerrri ts a leading sign.
Conversion proceeds until the nunber of digits in the string is
exhausted. Each function returns a O when there are no nore digits
to convert. See Chapter 2.7, "Type Conversions," in The C
Programmi ng Language for related infornation.

Decl ar ati ons:

char *string;

i nt iret, atoi(
long Iret, atolg
doubl e fret, atof

¥
g

Cal ling Syntax:

iret = atoi(digit string);

Iret = atol(digit string);

fret = atof(digit string);
Argunent s:

digit string —a pointer to a null-termnated string that
contai ns the number to convert
Ret ur ns:
iret =—matoi returns the converted string as an integer.

Iret —=atol returns the converted string as a long binary
number.

fret —atof returns the converted string as adoubl e-precision
fl oati ng-poi nt nunber.

Each function returns O when there are nodigits in the string.

Note: the atoi, atof, and atol functions do not detect or report
overflow Therefore, you cannot specify a linit to the nunber of
contiguous digits processed or determine the number of digits a
function processes.

C Language Programmer's Cui de brk, sbrk Functions

brk, sbrk Functions

The brk and sbrk functions extend the heap portion of your program
Use the brk function to set a new upper bound for the heap. The
upper bound is an address called the break in UNI X terninology. A

valid break address is one that does not exceed the maxi num extent
of the heap.

Use the sbrk function to extend the heap by an incremental nunber of
byt es.
Decl ar ati ons:

i nt ret, brk();

char *addr;
char *strt, *sbrk();
I nt incr;

Cal | i ng Synt ax:

ret = brk(addr);
strt = sbrk(incr);

Ar gunent s:
addr == the new break address

inCr =t he incremental nunber of bytes to extend the heap

Ret ur ns:
ret -==brk returns a O if successful, or a=1if it fails.

strt —=sbrk returns a pointer that marks the beginning of the
heap extension, or a -1 if it fails.

C Programmer's Qui de calloc, malloc, zalloc, realloc, free

calloc, malloc, zalloc, realloc, free Functions

The malloc, zalloc, calloc, realloc, and free functions manage a
bl ock of dynamic area in nenory called the heap. The heap is an
area of contiguous bytes aligned on a word boundary.

The malloc (menory allocation) function allocates a word-aligned
areainthe heaF and returns the starting address of the area. The
argurent to malloc is the number of bytes to allocate.

The zalloc (zero allocation) function is just like the nalloc
function except that it also zeros out the storage.

The cal l oc (chunk all ocation) function allocates space for an array
in the heap and returns the starting address of the array, The
first argument to calloc is the nunber of entries in the array, The
second argunent is the size in bytes of each entry.

The realloc function changes the size of a previously allocated
area. |f possible, realloc uses free space adjacent to the original
area. Oherwise, realloc allocates a new, |arger area. Realloc
copies the data fromthe old area to the new area, then frees the
old area. Realloc returns a pointer to the new area

The free function releases an area previously allocated with the
al |l ocation functions described above.
Decl ar at i ons:

i nt si ze, nunber;

char “*ret, *addr *mal | oc(), *zal | oc(), *cal | oc();
char *realloc();

Cal | i ng Synt ax:

ret = mal | 0025i zeg;
ret = zalloc(size);
ret = call oc(nunber, size);
ret = realloc(addr, size);
free(addr);

Ar gunent s:

size ——=the nunber of bytes to allocate
nunber —=the number of array elenents to allocate _
addr —points to the beginning of the allocated region

3-9

C Programrer's Guide calloc, malloc, zalloc, realloc, free

Ret ur ns:

ret —=the starting address of the allocated region if
successful, and 0 if the function fails

C Language Progranmer's Cui de chnmod, chown Functions

chnod, chown Functions

Under UNI X, the chmod and chown systemcal |'s al | owyou to change the
protection mode and owner 1 Dof an existing file, CP/M86 does not
support protection node or owner | D, so these calls have no effect.
They are included for UNI X conpatibility.

Decl ar ati ons:
char *“ nang;

i nt nmode, owner, group, ret, chmd(), chown();

Cal I'i ng Syntax:

ret = chnod(nane, node);
ret = chown(name, owner , group);
Argunents:
name —points to a null termnated filenanme
node ——the new node for the file
owner —the new owner of the file
group —the new group nunber
Ret ur ns:

ret -—=0 if the file exists, or =1 if the file does not exist

3-11

C Language Programer's Cui de cl ose Function

cl ose Function

The cl ose function term nates access to a file or device. The close
function acts on files that have been accessed with the open or
creat functions. You rmust speci f1Y a file descriptor for the close
function, not a stream address. he fclose function cl oses stream
files. See Chapter 8.3, "Open, Creat, Cose, Unlink," in The C
Programm ng Language for related information.

Decl ar at i ons:

int ret, close(), fd;

Cal I i ng Synt ax:

ret = close(fd);

Ar gunent s:

fd —the file descriptor of the file to close
Ret ur ns:

ret -—=0 if the function succeeds, or -1 if the function
detects an unknown fil e descriptor

3-12

C Language Programrer's Cui de cos, sin Functions

c0S, sin Functions

The cos function returns the trigononetric cosine for doubl e-
precision floating-point nunbers, ~The sin function returns the
trigononmetric sinefor doubl e-precisionfloating-point nunbers. You
must express all arguments in radians.

Decl ar ati ons:
doubl e c0S();
doubl e sin();

doubl e val ;

doubl e ret;

Cal | i ng Synt ax:

ret = cos(val);
ret = sin(val);
Argumant S:

val =a doubl e- preci sion floating-point nunber that expresses
an angle in radians
Ret ur ns:
ret =t he cosine or sine expressed in radians of the argunent
val ue

Note you can pass numbers declared as either float or double to
cos and sin. |If you pass a float, Cwll automatically convert it
to a doubl e

3-13

C Language Programmer 's Qui de creat, creata, creath Functions

creat, creata, creatb Functions

The creat, creata, and creatb functions create new disk files for
regular, lowlevel access. Al three functions return a unique
nunber called a file descriptor. The file descriptor is a positive
short integer used to identify afilein aCprogram Under CP/ M 86
the file descriptor can range fromO to 15, Refer to Chapter 8.1,
"File Descriptors,”" in The C Progranm ng Language for nore
information on file descriptors.

There is no difference between creat and creata. Both functions
create ASCI| files. Use creath to create binary files. Chapter
8.2, "Low Level |/ O==Read and Wite," in The CPrograming Language
has related information on the creat function.

Decl ar ati ons:
char *nane;

i nt nmode;
int fd, creat(), creata(), creath();

Cal | i ng Synt ax:

fd = creat(name, node);

fd = creata(nane, node);

fd = creatb(nane, node) ;
Ar gunent s:

nane —=a null-ternminated fil enane string

nmode -- the UNIX file node, ignored by CP/ M 86

Ret ur ns:

fd =mthe file descriptor for the opened fileor -1if anerror
occurs

Note: ASCII files use a CTRL-Z to indicate the end-of-file. Binary
files do not use an end-of-file marker. Therefore, CP/ M 86 cannot
directly detect the end of binary files. UN X prograns that use
creat with binary files conpile successfully, but night execute
i nproperly.

3-14

C Language Programer's Cui de ctype Functions

ctype Functions

The file CTYPE H defines a nunber of functions that classify ASC
characters. These functions test whether a character belongs to a

certain character class, Each function returns a O if the
classification test is false and a nonzero value if the test is
true. See Chapter 7.9, "Some M scellaneous Functions,” in The C

Progranmmi ng Language for related information on ctype functions.
The folTow ng table defines the ctype functions.

Table 3-3. ctype Functions

Function l Meani ng
isalphagc) cis aletter

i supper(c C i s uppercase

i slower(c c is |lowercase

isdigitgc cisadgit

i sal nun{c c is al phanumeric

i sspacel cg c is a white space character
i spunct(c Cc is a punctuation character
isprint(c c is a printable character
iscntrl(c c is acontrol character
isascii(c c is an ASCI1 character (< 0x80)

The white space characters are the space (0x20), tab (0x09),
carriage return (xQd), line-feed (0x0a), and formfeed (0x0cC)
characters. Punctuation characters are not control or al phanuneric
characters, The printing characters are the space (0x20) through
the tilde (0Ox7e). Acontrol character is any character |ess than a
space character (0x20).

Decl ar ati ons:
#i ncl ude <ctype. h>

int ret;
char c¢; /* or int c; */

3-15

C Language Programmer' s Gui de ctype Functions

Cal l'i ng Synt ax:

ret = isalpha(c);
ret = isupper(c);
ret = islpm@rgc);
ret = isdigit cg;
ret = isalnun(c

ret = gsspaceécg;
ret = Ispunct(c);
ret = |spr|nt§c);
ret = iscntrl(c);
ret = isascii(c);

Ar gunent s:

C —the character to classify

Ret ur ns:

ret —0 if the classification test is false, or a nonzero
value if the test is true

Note the ctype functions are inplemented as macros. Therefore,
argunents that invol ve side ef fects, such as *p++, night not work as
expected and shoul d be avoided. The functions return neani ngless
values if arguments are not ASCII characters. Do not declare

functions that are inplenented as macros.

3-16

C Language Programmer's Qui de execl Function

execl Function

The execl function passes control from an executing C programto
another C program You can chain any nunber of C progranms for
execution. However, once you pass control to a new program you
cannot effectively return to the original program The new program
overlays the original programin nmenory. Therefore, if you chain
Ibaclt< tothe original program all data fromthe first execution are
ost.

Specify the nanme of a file that contains the programto chain to and
any argunents that the new programneeds during execution You nust
have at |east one argument in addition to the filenane, The
argunent must point to anull-terninated string that is the sane as
the fil ename string. This calling syntax procedure is based on UNI X
conventi ons.

Decl ar ati ons:
int execl();

char * name, *argl, *arg2;

Cal li ng Synt ax:

ret = execl(name, argl, arg2, ..., NULLPTR);

Ar gunent s:
name —a pointer to a null-termnated filename string
ar gX —pointers to null-terninated character strings

NULLPTR ——=taCr 0 defined in PORTAB.H equal to O

Ret ur ns:

ret == =1 if the function fails
Not e: if execl returns to the original program an error has
occurred. The functionreturns a=-1 and the errno external variable

is set to indicate the error, Refer to the perror function for
addi tional information.

3-17

C Language Progranmer' s Cui de exit, _exit Functions

exit, _exit Functions

The exit function passes control to CP/M86. An optional conpletion
code mght return. The conpletion code is operating system
dependent. CP/M 86 ignores the code, exit deallocates all nmenory
and cl oses any open files, exit also flushes the buffer for stream
out put files.

The —exit function immediately returns control to CP/ M 86, without
flushing buffers, closing open files, or deallocating menory. See
Chapter 7.7, "Error Handl i ng—Stderr and Exit," in The CProgranm ng
Language for related information.

Decl ar ati ons:

int code;

Cal I'i ng Syntax;

exit(code);
_exit(code);

Ar gunent s:
code —t he optional, systemdependent conpletion code

Ret ur ns:

No return val ues

3-18

C Language Programer' s Gui de exp Function

exp Function

The exp function returns the constant e raised to a specified
exponent. The constant e i s the base of natural |ogarithns equal to
2.71828182845905.

Decl ar ati ons:
doubl e val ;

doubl e ret;
doubl e exp();

Cal | i ng Synt ax:

ret = exp(val);

Argumsnt S:

val ==t he exponent expressed as a doubl e-precision floating-
poi nt numnber

Ret ur ns:

ret —the value of e raised to the specified exponent

Note& you can pass numbers declared as either float or double to
expBI [f you pass a float, C will automatically convert It to a
doubl e.

3-19

C Language Programmer's Quide fabs Function

fabs Function

The fabs function returns the absol ute val ue of a doubl e-precision
floating=point nunber.
Decl ar ati ons:

doubl e ret;

doubl e fabs();
doubl e val;

Cal I i ng Synt ax:

ret = fabs(val);

Ar gument s:

val —a doubl e-precision floating-point nunber

Ret ur ns:

ret —the absolute value of the floating-point nunber

Not e you can pass numbers declared as either float or double to
gabgl. If you pass a float, Cw || automatically convert it to a
oubl e.

3-20

C Language Programer's Cui de fclose, fflush Functions

fclose, fflush Functions

The fclose function wites all data in a streamfile to disk and
closes the file. The fflush function wites all data in a stream
file to disk but leaves the file open. A pointer identifies the
stream to cl ose. See Chapter 7.6, "File Access," in The C
Progranmi ng Language for related information

Decl ar at i ons:

int ret, fclose(), fflush();j
FI LE *stream

Cal I'i ng Synt ax:

ret = fclose(strean;
ret = fflush(stream;
Argunent s:

stream —=a pointer to a streamfile control structure

Ret ur ns:

ret —0 if the function succeeds, or -1 if the function
encounters a bad stream address or a wite failure

3-21

C Language Programer' s Qui de feof, ferror, clearerr, fileno

feof, ferror, clearerr, fileno Functions

The feof, ferror, clearerr, fileno functions enable stream file
mani pul ation in a systemindependent manner.

Use the feof function to detect the end-of-file in a stream

Use the ferror function to detect errors in a streamfile. The
clearerr function clears any error detected, This is nost useful
for functions such as putw, where no error indication returns for
out put failures.

The fileno function returns the file descriptor associated with an
open stream See the fdopen function.

Decl ar ati ons:
int ret, fd;

int feof(), ferror(), filen]
FI LE *str%am O °0

Cal | i ng Synt ax:

ret = feof(strean);

ret = ferror(stream;

clearerr(strean;

fd = fileno(strean);
Ar gunent s:

stream ——=a pointer to a streamfile control structure

Ret ur ns:

ret —feof returns a nonzero value if the specified streamis
at the end-of-file, and zero if it is not.

ret -- ferror returns a nonzero value if an error occurs in a
specified streamfile.

clearerr returns no value

fd efileno returns the file descriptor associated with the
specified file

3-22

C Language Programmer's CGuide fopen, freopen, fdopen Functions

fopen, freopen, fdopen Functions

The fopen, freopen, and fdopen functions associate an 1/ O stream
with a file or device.

The fopen and f opena functions are exactly the same. Both functions
open an existing ASCII file for 1/0O as a stream The fopenb
function opens an existing binary file for I/Oas a stream If the
specified file does not exist, the fopen, fopena, and fopenb
functions create the file. See Chapter 7.6, "File Access,” and
Chapter 8.5, "Exanmpl e—An I npl ementation of Fopen and Getc," in The
C Progranmi ng Language for related information on fopen.

The freopen and freopa functions substitute a newASClI| file for an
open stream The freopb function substitutes a new binary file for
an open stream

The fdopen function adds a streamfile control structure to a file
opened for regular access.

Decl ar ati ons:

FI LE *fopen(), *fopena(), *fopenb(),
FI LE *freopen(), *freopa(), *Fre(t))(p%)();
FI LE *f dopen();

FI LE *stream

char ¢ name, ¢ access;

int fd;

Cal | i ng Synt ax:

stream = fopen(nane, access);

stream = fopena(hane, access);
stream = f openb(name, access);
stream = freopen(nane, access, strean),
stream = freopa(name, access, strearq%;
stream = freopb(nane, access, strean);
stream = fdopen(fd, access);

Ar gunent s:

name —a pointer to a null-terninated filenane string
stream —a pointer to a streamfile control structure
ACCESS ==t he access string can be one of three characters:

r read the file
w wite the file
a fil

append to a e

3-23

C Language Progranmer' s Gui de fopen, freopen, fdopen Functions

Ret ur ns:

stream -- the streamaddress if the function succeeds, or 0 if
the function fails

Note ASCII files use aCTRL-Z to indicate the end-of-file. Binary
files do not use an end-of-file marker. Therefore, CP/ M 86 cannot
directly detect the end of binary files. UNIX programs that use
fopen, freopen, or fdopen with binary files conpile and Iink
correctly but night execute inproperly.

3-24

C Language Progranmer !'s Gui de fread, fwite Functions

fread, fwite Functions

The fread and fwrite functions transfer a streamof bytes between a
streamfile and prinmary nenory.

fread transfers bytes from a stream file to nenory, fwite
transfers bytes fromnmenmory to a streamfile.

Decl ar ati ons:
int fread(), fwiteO;
char *buff;

int size, nitens;
FI LE *stream

Cal I'i ng Synt ax:

nitems = fread(buff, size, nitens, strean);
nitems = fwite(buff, size, nitens, strean);
Ar gunent s:

buff ==ethe primary nmenory buffer address
Size —the nunber of bytes in each item
nitens —the nunber of itenms to transfer
stream —=points to an open streamfile

Ret ur ns:

nitenms —the nunber of itens read or witten, or 0 if anerror
occurs, including EOF

3-25

C Language Programmer's Qui de fseek, ftell, rew nd Functions

fseek, ftell, rew nd Functions

The fseek, ftell, and rewind functions position the read/wite
pointer in a streamfile, fseek and rewind have no effect on a
consol e or listing device. ftell returns a meaningless value for
nonfile devices.

The fseek function sets the read/wite pointer to an arbitrary
offset in the stream

The rewi nd function sets the read/wite pointer to the beginning of
the stream

The ftell function returns the present position of the read/ wite
pointer in the stream
Decl ar ati ons:

i nt ret, fseek(), rew nd();

FILE *stream

long offset, ftell();
i nt pt r name;

Cal l'ing Synt ax:

ret
ret
offset = fte

fseek(stream offset, ptrname);
rewi nd?strean);
[(strean);

Ar gunent s;

stream =—points to a streamfile
of fset —a signed of fset neasured in bytes .
ptrname —=The of fset can start fromone of three points:

0 from beginning of file
1 fromcurrent position
2 fromend of file
Ret ur ns:
ret -~ 0 if the function succeeds and -1 if it fails
of fset ——current position of the pointer in the stream

Note: ASCII file seek and tell operations do not account for
carriage returns. The functions ignore carriage returns. A CTRL-Z
character at the end of the file is handled properly.

3- 26

C Language Progranmmer's Cui de getc, getchar, fgetc, getw, gel

getc, getchar, fgetc, getw, getl Functions

The getc, getchar, fgetc, getw, and getl functions perform i nput
froma stream

The getc function reads a single character froman input stream
This function is inplenented as a macro in STDIQH Argunents do
not create side effects.

The getchar function reads a single character from the standard
input, It isidentical togetc(stdin) inall respects, See Chapter
7.2, "Standard I nput and Qit put —et char and Putchar," and Chapter
7.6, "File Access," in The C Programm ng Language for related
informati on on getc and getchar.

The fgetc function is a function inplenmentation of getc, used to
reduce obj ect code size.

The getw function reads a 16-bit word froma stream high-order byte
first. getw is conpatible with the read function. No speci al
alignnment is required.

The get!| function reads a 32-bit long integer froma stream in 8086
byte order. No special alignnent is required.

Decl ar ati ons:
i nt i charac, getchar(), fgetc();
FILE *stream

i nt iword, getw();
long ilong,getl();

Cal I'i ng Synt ax

i charac = getc(strean);
i charac = getchar();
icharac = fgetc(strean);
iword = getw(strean);
ilong = getl(strean);

Argunent s;

Sstream —a pointer to a streamfile control structure

Ret ur ns:
ichar -- the character read fromthe stream
iword =- the word read from the stream

ilong ——the long word read fromthe stream or -1 if a read
failure occurs

3-27

C Language Programer’'s Cuide getcf getchar, fgetc, getw, getl

Note: errors that return fromgetchar are inconpatible with UNIX
prior to UNLX Version 7. Errors that return fromgetl or getw are
valid values that might normally occur in a file. Use feof or
ferror to detect an end-of-file or read error.

3- 28

C Language Programer's Guide get pass Function

get pass Function

The getpass function reads a password from the consol e devi ce.

The function issues a specified pronpt, then reads the input
response without echoing the input to the console. The function
returns a pointer that EOi nts to the password, which is a null-
term nated string, The string can contain eight or fewer
characters.

Decl ar ati ons:
char *pronpt;

char *get pass;
char *pass;

Cal I i ng Synt ax:

pass = get pass(pronpt);

Ar gunent s:

prompt —a pointer to a null-termnated pronpt string

Ret ur ns:

PasS =mewa poiNter to the password

Note the return value points to static data that is overwitten
upon each call to getpass.

3-29

C Language Progranmmer's Qui de get pi d Function

getpid Function

The getpid function is provided for UNI X V7 conpatibility and serves
no purpose under CP/ M 86. Under UNI X, getpid returns a dumy
process ID. Under CP/M86, the return value Is unpredictable.

Decl arations:
int pid, getpid();

Cal | i ng Synt ax:
pid = getpid();

Argunent s:

getpid uses no argunents

Ret ur ns:

pid —a dummy process-1D on single-tasking operating systens

3-30

C Language Programer's Cuide gets, fgets Functions

gets, fgets Functions

The gets and fgets functions read strings fromstreamfiles, fgets
reads a string including a newine (line-feed) character. gets
del etes the new ine and reads onl'y fromthe standard input., Both
functions termnate the strings with a null character.

You nust_speci fy a maxi numcharacter count with fgets, but not with
gets. This count includes the terninating null character. See
Chapter 7.8, "Line Input and Qutput," in The CProgramm ng Language
for related information on fgets.

Decl ar ati ons:

char *addr;

char *stg;

char *gets(), *fgets();
int nmax;

FI LE *stream

Cal | i ng Synt ax:

addr = gets(stg);
addr = fgets(stg, max, stream;
Ar gunent s:
stg —pointer to a null terninated string
max ==t he maxi mum character count

stream —=points to the input stream

Ret ur ns:

addr —=the string address

3-31

C Language Programrer's Guide i ndex, rindex, strchr, strrchr

i ndex, rindex, strchr, strrchr Functions

The index, rindex, strchr, and strrchr functions | ocate a specified
character in a string. index and strchr return a pointer to the
first occurrence of the character. rindex and strrchr return a
pointer to the | ast occurrence of the character. See Chapter 4.1,
S Bgsi cs," in The C Programmi ng Language for related information on
i ndex.

Decl ar ati ons:

char charac;

char *stg:;

char *ptr; :

char *index(), *rindex(), *strchr(), *strrchr();

Cal i ng Syntax:

ptr = index(stg, charac),
ptr = rindex(stg, charac);
ptr = s{rc rfst , charac);
ptr = Strchrjstgd, charac);
Argunent s:
stg —pointer to a null=termnnated string

charac ==t he character to |ook for

Ret ur ns;

ptr —the address of the specified character, or O if the
character does not occur in the string

Note; strchr is identical to index, and strrchr is identical to
rindex. They are alternate names for the same entry points, but
strchr and strrchr are the preferred entry point nanes. index and
rindex are included for conpatibility with UNI X Version 7.

Under UNI X Level Ill, rindex has been elinmnated and index is a
function simlar to but not quite the same as strchr. Under UNI X
Level 111, the second argunment to index is a pointer to a null-

termnated string instead of a single character argument. Plan to
convert index and rindex to strchr and strrchr respectively for
conpatibility with later releases of UNI X

3-32

C Language Programrer's Quide isatty Function

i satty Function

A CP/ M 86 programcan use the isatty functionto det er m ne whet her a
ile descriptor is attached to the CP/ M 86 consol e device (CON).

Decl ar at i ons:

int ret, isattyO, fd;

Cal i ng Syntax:

ret = isatty(fd);

Ar gunent s:

fd —=an open file descriptor
Ret ur ns:

ret —=1if the file descriptor is attached to CON, and O if
not attached to

3-33

C Language Programmer's Gui de l og, |ogl O Functions

l og, logl O Functions

The I og function returns the natural |ogarithmof a doubl e-precision
floating-point nunber. The logl O function returns the base 10
| ogarithm of a doubl e-precision floating=-point nunber.

Decl ar ati ons:
doubl e val ;
doubl e ret;

doubl e log();
doubl e logl ();

Cal |'i ng Synt ax:

ret = log(val);
ret = logl Q(val);
Ar gunent s:

val —a doubl e-precision floating-point nurber

Ret ur ns:
ret =t henatural or base 10 | ogarithmof the doubl e- precision
fl oating- poi nt nunber

Note: you can pass numbers declared as either float or double to
I og and Io?lo. I'f you pass a float, Cwill automatically convert it
to a double

3-34

C Language Programer's CQuide | seek, tell Functions

| seek, tell Functions

The |seek function positions a file referenced with a file
descriptor to an arbitrary offset. Do not use this function with
stream files, because the data in the stream buffer night be
invalid. Use the fseek function with streamfiles. See Chapter

4, "Random Access=maeek and Lseek," in The C Progranm ng Language
for related information.

The tell function deternines the file offset for an open file
descri ptor.

Decl ar ati ons:

i nt fd;

i nt pt r nane;

| ong offset;

long ret, Iseek(), tell();

Cal i ng Synt ax:

ret = Iseek?fd, of fset, ptrnane);
ret = tell(1d);

Ar gunent s:
fd —t he open file descriptor

offset —ma signed byte offset in the file

ptrnane =t he of f set interpretation, which can be one of three
nunber s:
0 - from the beginni n? of the fi
1- fromthe current fil Posm
2 - fromthe end of the fi

Ret ur ns:
ret —resulting absolutefileoffset, or =1if anerror occurs

Not ez these functions are i nconpatible w th Versions 1 through 6 of
UNI X

3-35

C Language Progranmmer's Qui de mkt enp Function

nkt enp Function

The nktenp function creates a tenporary filenanme. The calling
argunent is a character string ending in six upper- or |owercase X
characters. The tenporary filename overwites these characters. If
you specify no x characters in the argunent string, the original
fil ename remains unchanged. If you specify fewer than six X
characters in the argunent string, unpredicable results occur.

Decl ar at i ons:
char *string?
char *nktenpO;
Cal I i ng Synt ax:
string = nktenp(string)

Ar gunent s:
String —t he address of the tenplate string

Ret ur ns:

string =t he original address argunent

3-36

C Language Programmer's CGuide open, opena, openb Functions

open, opena, openb Functions

The open and opena functions open an existing ASCII file withafile
descriptor. The openb function opens an existing binary file. You
canopen afilefor reading, witing, or updating. See Chapter 8.3,
"Qpen, Creat, Cose, Unlink," in The C Programmi ng Language for
related information.

Decl ar ati ons:

char *nane;
int node;
int fd, open(), opena(), openb();

Cal | i ng Synt ax:

fd = open(hane, node);
fd = opena(nanme, node);
fd = openb(nane, node);

Nane ===points to a null-terminated fil ename string
node —t ype of access, can be one of three val ues:

0 - Read-Onl
1- Wite-Only
2 - Read-Wite (update)

Ret ur ns:

fd —the file descriptor to access the file or =1 if the
function fails

Note: ASCI| files use a CTRL-Z to indicate the end-of-file. Binary
files do not use an end-of-file marker. Therefore, CP/ M86 cannot
directly detect the end of binary files. UNIX programs that use
open with binary files conpile correctly, but might execute

i nproperly.

3- 37

C Language Programmer's Guide perror Function

perror Function

The perror function wites a short nmessage on the standard error
file that describes the | ast operating systemerror to occur. The
function prints a prefix string specified'as a perror argunent, then
a colon and the error nessage.

The system library sinulates the UNIX notion of an external
variable, errno, that contains the last error to return fromthe
operating system

The perror function and the errno external variable report errors
that occur during a CP/ M86 systemcall. The #include file ERRNOQ H
contains synmbolic definitions for the errors that CP/ M-86 returns.
The ERRNQ H file al so includes the names for all errors defined in
UNI X V7. Therefore, you do not have to change prograns that
reference these definitions, The following table lists error
numbers, symbolic nanmes, and nessages available that perror can
report.

Table 3-4. perror Error Codes

Nunber Nane Error Message
0 - Error undefined on CP/ M 86
1 - Error undefined on CP/ M 86
2 ENCENT No such file
3 - Error undefined on CP/ M 86
4 - Error undefined on CP/ M 86
5 El O [/Oerror
6 - Error undefined on CP/ M 86
7 E2BI G Arg list too long
8 - Error undefined on CP/ M 86
9 EBADF Bad file nunber

Error undefined on CP/ M 86
- Error undefined on CP M 86
ENOVEM Not enough core
EACCES Per ni ssi on deni ed
- Error undefined on CP M 86
Error undefined on CP/ W86
Error undefined on CP/ M 86
Error undefined on CP/ M 86
Error undefined on CP/ M 86
Error undefined on CP/ M 86
Error undefined on CH M 86

NRRRRREPRRRPRE
SOONOUITRWNRO

21 Error undefined on CP/ M 86
22 El NVAL [nvalid argunment

23 ENFI LE File table overflow

24 EMFI LE Too many open files

25 ENOTTY Not a typewiter

26 - Error undefined on CP/ M 86

3-38

C Language Programmer's Gui de perror Function

Table 3-4. (continued)

Nunmber Nane Error Message
27 EFBI G File too big
28 ENGSPC No space | eft on device
29 - Error undefined on CP/ M 86
30 ERCFS Read-Only file system
31 - Error undefined on CP/ M 86
32 - Error undefined on CP/ M 86
33 - Error undefined on CP/ M 86
34 - Error undefined on CP/ M 86
35 ENCDSPC No directory space

Decl ar ati ons:

char *s;

Cal | i ng Synt ax:

perror(stg);

Ar gunent s:

Sty =mmpoints to the prefix string to print

Ret ur ns:

perror does not return a val ue.

Note: certain error messages are defined in UNI X but not in CP/ M
86.

3-39

C Language Progranmer's Guide printf, fprintf, sprintf Functions

printf, fprintf, sprintf Functions

The printf functions convert and format data for output. To
reference a printf function, you specify a format string and a
series of argunents to format. The format string consists of a
series of conversion specifications. The nunber of conversion
specifications in the format string must match the nunber of
argunents that fol |l ow Each conversion specification corresponds to
one argument. The function converts and formats each argunent
consecutively as listed in the function reference. See the
foll owing page for nore information on format strings.

The printf function outputs to the standard output file. The
fprintf function outputs to an arbitrary streamfile. The sprintf
function outputs to a string (nenory). Refer to Chapter 7.3,
"Formatt ed Qut put —Rri ntf," and Chapter 7.6, "File Access," inThe C
Programi ng Language for nore details on these three functions.

Decl ar ati ons:

i nt ret, printf(), fprintf(), *sprintf();
char ¢ fornmat;

FILE ¢ stream

char * string;

/* Args can be any type */

Cal | i ng Synt ax:

ret = printf (format, argl, arg2...);
ret = f rinH stream format, argl, arg2...);
ret = SPrintrjstring, format, argl, arg2...);

Argunent s:

format —=the format string

argX ==the data argunents to format

stream —=points to a streamfile opened for output
string =——=points to a string buffer

3-40

C Language Programmer's Quide printf, fprintf, sprintf Functions
Ret ur ns:
ret —the number of characters output, or -1 if an error

occurs

Format Strings:

A percent sign, % in the format string indicates the start of a
conversion specification. After the percent sign, you can use a
conbi nati on of reserved formatting synbols, digits strings, and
conversion characters to specify a particular format for the data.
Conversi on characters operate primarily on nunmeric data and nust
appear | ast in aconversion specification. If acharacter after the
percent sign is not a reserved formatting synmbol, digit, or
conversion character, the function prints that character literally.
Tabl e 3-5 defines the conversion characters.

Tabl e 3-5 Qut put Conversion Characters

Qper at or Meani ng

d Converts a binary nunber to
decimal ASCII and inserts in
out put stream

o Converts a binary nunber to octal
ASCI| and inserts in output
stream

X Converts a binary nunber to

hexadeci mal ASCI| and inserts in
out put stream

C Uses the argunent as a single
ASCI | character.

S Uses the argument as a pointer to
a null-termnated ASCII strin%,
and inserts the string into the
out put stream

u Converts an unsi gned bi nary nunber
to decimal ASCIl and inserts in
out put stream

% Prints a %character.

3-41

C Language Programmer's Quide printf, fprintf, sprintf Functions

Tabl e 3-5 (continued)

Oper at or Meani ng

f Converts a float or doubl e number
to ASCI| decimal and inserts in
out put stream, The precision
string controls the number of
deci mal places, Default is six
digits to the right of the
deci mal point.

e Same as f, except nunber converts
to scientific notation.

9 Converts float or double nunbers
using the d, f, or e conversion
character depending on which
yields the full precision with a
m ni mum nunber of characters.
The input val ue nust be float or
doubl e.

You can use the follow ng reserved formatting symbols and digit
strings between the percent sign and a conversjon character.
Remenber, the conversion character nmust appear |ast in a conversion
speci fication.

e Aninus sign, -, justifies the converted output to the left,
instead of the default right justification.

e Adigit string specifies afield width. This value gives the
m ni numwi dth of the output field. If thedigit string begins
with a O character, zero padding results instead of blank
paddi ng. An asterisk, *, takes the value of the width field as
the next argument in the argument |ist.

e A period, ., separates the field width from the precision
string.

e Adigit string that follows a period specifies the precision
for floating-point conversion The precision is the nunber of
digits that follow the decimal point. An asterisk tells the
function to use the value of the precision field fromthe next
argunment in the argunent |i st.

e The character L or 1 specifies a 32-bit long value, For
exarTJ)Ie, in a small rnodel, where a pointer is 16 bits, you
woul d say printf("%x",p); but in a big nodel, where a pointer

is 32 bi'ts, you would say printf("uB1X",p);

3-42

C Language Programmer's Cui de putc, putchar, fputc, putw, putl

putc, putchar, fputc, putw putl Functions

The putc, putchar, fputc, putw, and putl functions output characters
and words to streamfiles,

The putc function outputs a single 8-bit character to astreamfile.
This function is inplemented as a macro in STDIQH Therefore, do
not use argunents that involve side effects, Do not declare
functions that are inplemented as macros. The fputc function is
equivalent to putc. However, fputc is not inplemented as a macro.

The putchar function outputs a character to the standard output
stream file. This function is also inplemented as a macro in
STDOQH Avoid using functions that involve side effects with
putchar. The C Programmi ng Language, Chapter 7.6, "File Access,”
has rel ated information on putc, and Chapter 7.2, "Standard | nput
anfl hQJt put —Ger char and Putchar,” has related information on
put char.

The putw function outputs a 16-bit word to a specified streamfile.
The word is output high-order byte first and i s conpatible with the
wite function call.

The putl function outputs a 32-bit longword to a specified stream
f|Ile. The bytes are output in 8086 order like the wite function
calI.

Decl ar ati ons:

char charac;
FILE *stream
i nt ret, fputc(
long Iret, putl(

), wd, putw();
). Ing;

Cal I i ng Synt ax:

ret = putc(charac, stream;
ret = fputc(charac, stream;
ret = putchar(charac);
ret = putwwd, strean);
Iret = putl(lng, stream;

Ar gunent s:

charac —=the character to output

stream —=poi Nts to the output streamfile
wrd -t he word to output

I ng -t he | ong to output

3-43

C Language Progranmer's Cui de putc, putchar, fputc, putw, putl
Ret ur ns:
ret -- the word or character output, -1 indicates an out put

error

Iret —=thelong output with putl, -1 indicates an output error

Not e: a -1 return fromputwor putl is a valid integer or

[ong
val ue. Use ferror to detect wite errors.

3-44

C Language Progranmmer's Quide puts, fputs Functions

puts, fputs Functions

The puts and fputs functions output a null-ternminated string to an
output stream Neither routine copies the trailing null to the
out put stream

The puts function outputs a null-termnated string to the st andard
out put, and appends a new ine character.

The fputs function outputs the string to a specified output stream
The fputs function does not append a new ine character. Chapter
7.8, "Line Input and Qutput," in The C Programm ng Language has
rel ated information on fputs.

Decl ar at i ons:

int ret, puts(), fputs();
char *stg;
FILE*® stream

Cal | i ng Synt ax:

ret = puts(stg);
ret = fputs(stg, strean);
Ar gunent s:
stg -t he string to be output

St ream ==t he out put stream

Ret ur ns:

ret —=the | ast character output or =1 if an error OCCUrsS

Not e: the difference between puts and fputs is required for
conpatibility with UNIX

3-45

C Language Programrer's Qui de gsort Function

gsort Function

The gsort function is a quick sort routine. You supply a vector of
el ements and a conpari son function that conpares two el enents. The
gsort function sorts the elenents in the vector according to your
conpari son function.

A vector is a series of elenments specified by a base address, the
nunber of elements in the vector, and the size of each elenent in
b%t es. Acall to the comparison function that you wite nmust use
the follow ng fornat:

return = conpare(a,b);

Your conparison function nust return values according to the
following criteria

return value is <0 if a<bh
return value is =0 if a=b
return value is >0 if a>b

Decl ar ati ons:

int ret, gsort();

char *base;
int nunber;
int size;

int conpare();

Cal i ng Syntax:

ret = qsort(base, nunber, size, conpare);

Ar gunent s:
base -~ the base address of the el ement vector
nunmber =- the nunber of elenents to sort

si ze —si ze of each elenent in bytes _ :
conpare —t he address of the user witten comparison function

Ret ur ns:

ret =—=gsort always returns a value of O.

3-46

C Language Progranmer's Cui de rand, srand Functions

rand, srand Functions

The rand and srand functions constitute the Clanguage randomnumber
generator. Call srand with the seed to initialize the generator.
Call rand to retrieve randomnunbers. The randomnunbers are Cint
quantities.

Decl ar ati ons:
int srand(), seed?

int rnum rand();

Cal | i ng Synt ax:

rnum = srand(seed);
rnum = rand() ;

Ar gunent s:

seed -- an int random nunber seed

Ret ur ns:

rnum -- a random i nt nurber

3-47

C Language Programmer's Qui de read Function

read Function

The read function reads data from a file opened with a file
descriptor using open or creat. You can read any number of bytes,
starting at the current file pointer.

Under CP/ M 86, the nost efficient reads begin and end on 128-byte
boundari es.

See Chapter 8.2, "Low Level [/O--Read and Wite," in The C
Programm ng Language for related information.

Decl arati ons:
int ret, read();
i nt 3
char *buffer;
unsi gned byt es;
Cal i ng Synt ax:

ret = read(fd, buffer, bytes);

Ar gunent s:
—3a file descriptor open for read

fd
buf f er -t he buffer address
bytes —=the nunber of bytes to be read

Ret ur ns:

ret —=nunber of bytes actually read, or -1 if an error occurs

3-48

C Language Programer's Qui de scanf, fscanf, sscanf Functions

scanf, fscanf, sscanf Functions

The scanf functions convert data for input. The functions read
characters froman input source, convert themaccording to a format
string, and store themin specified arguments, Arguments nust be
ointers. The functions continue toread characters until the input
ield width is exhausted.

To reference a scanf function, you specify the format string and a
series of argunents. The format string consists of a series of
conver si on speci fications. The number of conversion specifications
inthe format string nust match the nunber of argunents that fol |l ow
Each conversion specification corresponds to one argument. See
bel ow for more information on format strings.

The scanf function reads fromthe standard input, fscanf reads from
an open streamfile, and sscanf reads froma nul I-termnated string.
Refer to Chapter 7.4, "Formatted | nput—Scanf,” in The CProgranm ng
Language for related information. '

Decl ar ati ons:

char *format, *string;

int nitems, scanf(), fscanf(), sscanf();
FI LE *stream

/* args can be pointers of any type */

Cal | i ng Synt ax:

nitens = scanf?forrrat, argl, arg2 ...);

nitems = fscanf(stream format, argl, arg2 ...);

nitens = sscanf(string, format, argl, arg2 ...);
Argumants:

format —=the control string

argX ——pointers to locations to store converted data
stream —a streamfile opened for jnput

string ===null-termnated input string

Ret ur ns;

nitens -==the nunber of items converted, or =1 if anl/Oerror
occurs

3-49

C Language Programmer's Qui de scanf, fscanf, sscanf Functions

Format String:

Format strings for scanf functions consist of the following itens:

e Bl anks, tabs, or newines (line-feeds) that match opti onal
white space in the input data

® An ASCI| character (not % that matches the next character of
the input stream

e Conversion specifications, consisting of a |eading percent
sign, % an optional asterisk, *, and a conversion character.
The asterisk tells the function to suppress assignment of the
data and skip to the next one. Conversion characters indicate
theinterpretationof the input field. Table 3-6 defines valid
conversi on characters.

Table 3-6. I nput Conversion Characters

Char act er { Meani ng
% Asingle percent sign, % matches
in the input at this point; no
conversion is perfornmed.

d Converts a deci mal ASCI| integer
and stores it where the next
argunent points,

o] Converts an octal ASCI| integer
and stores it where the next

argunent points.

X Converts a hexadeci nal ASCl |
integer and stores it where the
next argunment points. Can also
be used to input a pointer val ue.
Use one % for small nodel and
two for big nodel to input both
the offset and segment val ues.

S Acharacter string, ending with a
space, is input. The argument
pointer is assuned to point to a
character array big enough to
contain the string and a trailing
nul | character, which are added.

c Stores a single ASCI| character,
including spaces, To find the
next nonbl ank character, use % s,

3-50

C Language Programmer's Cui de scanf, fscanf, sscanf Functions

Table 3-6. (continued)

Char act er Meani ng

h Converts a short integer. The
correspondi ng argunment nust be a
pointer to a short integer

e or f Converts a string to floatings
poi nt binary. The corresponding
argunment shoul d be doubl e.

=] Indicates a string that is not
delimted wth spaces, The
specified character string nust
be enclosed in the brackets. |f
the first character after the
left bracket is not ", the string
isread up to the first character
outside the right bracket. |
the first character after the
left bracket is ™, the string is
read up to the first character
that is in the set of charcters
that remains between the
br acket s.

C Language Programmer's CGui de set buf Function

set buf Function

The setbuf function assigns buffering to an input/output stream
Use setbuf after the streamhas been opened but before it is read or
witten.

By using setbuf, you can specify a character array for a buffer in
pl ace of the automatically allocated buffer. |f you specify the
constant pointer NULL, input/output will be conpletely unbuffered.
Decl ar ati ons:

i nt setbuf();

FI LE *stream
char *puffer;

Call'i ng Synt ax:

ret = setbuf(stream buffer);

Ar gunent s:

stream —=a pointer to a streamfile
buf fer —=character array to serve a buffer

Ret ur ns:

ret == 0 if the function is successful and -1 if it fails

3-52

C Language Programer's Cui de setjnp, |ongjnmp Functions

setjnp, |ongjnp Functions

The setjnmp and longjnp functions enable a program to execute a
nonl ocal GOTQ Use the setjnmp function to save the program
environment at a specific point in the flow of execution and to
specify a return location for the longjnp call. You can then call
longjnmp fromany point after the setjnp call.

The longjnp function sinmulates a return froma call to setjnp.
First, longjnp returns a value to setﬂ mp as specified in the second
argunent in the longjnp call. Secondly, execution continues at the
instruction immediately following the setjnp call in the program

If the function that invokes setjnp returns, the saved environnent
becones invalid and |ongjnp cannot be used with it. The setjnp
function saves the program environment in a variable of type
j mp_buf. The type jnp_buf is defined in the include file setjnp. h.

Decl ar ati ons:
#include <setjnp. h>

int xret, ret, setjnmO;
j mp=buf env;

Cal I i ng Synt ax:

xret = set'j nmp(env) ;
| ongj nmp(ehv, ret);
Ar gunent s;:
env —=contains the saved environment
ret —the desired return value fromsetjnp
Ret ur ns:

Xret =m0 whensetjnpiscalledinitially, thencopiedfromret
when longjnp is called

3-53

C Language Programer's Cui de sqrt Function

sgrt Function

The sqrt function returns the square root of a doubl e-precision
fl oati ng- poi nt nunber,
Decl ar ati ons:

doubl e sqgrt();

doubl e val;
doubl e ret;

Cal l'i ng Synt ax:

ret = sqgrt(val);

Ar gunent s:

val =a doubl e-precision floating-point nunber

Ret ur ns:
ret -- the square root of the specified doubl e= preci si on
fl oati ng=poi nt nunber

Note you can pass nunbers declared as either float or double to
sqrt. If you pass a float, Cwill automatically convert it to a
doubl e.

3-54

C Language Programmer's Cuide strcat, strncat Functions

strcat, strncat Functions

The strcat and strncat functions concatenate strings.

The strcat function concatenates two null-termnated strings. The
strncat function concatenates a null-terminated string and a
speci fi ed maxi mum nunber of characters froma second string.

See Chapter 2.8, "Increnent and Decrement Operators,” in The C
Progr anmi ng Language for rel ated i nformationon the strcat function.

Decl ar ati ons:
char *stgl, *stg2, *ret;

char *strcat(), *strncat();
int max;

Cal li ng Syntax;

ret = strcat(stgl, stg2);
ret = strncat(stgl, stg2, max);
Ar gunent s;

stgl =—=the first string

St g2 -t he second string, ?appended to stgl)

MBX —t helrraX| mum nunber of characters fromstg2to append to
stg

Ret ur ns:

ret —=points to the first string appended to the second
Note if you use strcat(stgl,stgl), the function does not term nate
and usual [y destroys the operating system The end-of-string marker

becones | ost. Therefore, strcat continues until it runs out of
menory, including menory the operating systemoccupi es.

3-55

C Language Programmer's Cui de strcnp, strncnp Functions

strcnp, strncnp Functions

The strcnp and strncrp functions conpare strings.

The strcnp function conpares two null-term nated strings, _strncn'ﬁ
limts the conmparison to a specified nunber of characters in eac
string.

See Chapter 5.5, "Character Pointers and Functions,”" in The C
Programm ng Language for rel ated i nformati on on the strcnp function

Decl ar at i ons:

char *stgl, *stg2;
i nt val, strcnpO, strncnpO, nex;

Cal I i ng Synt ax:

val = strcnp(stgl, stg2);
val = strncnp(stgl, stg2, max);

Argunents;
stgl =mewa null-terninated string address

stg2 —a nul l-termnated stri nﬂ addr ess
maX ==t he maxi mum nunber of characters to conpare

Ret ur ns:
val -- the nunber of characters:
<0 if stgl < stg2
= 0if stgl = stg2
>0 if stgl > stg2
Not e: different machines and conpilers nmight interpret the

characters as signed or unsigned.

3- 56

C Language Programmer's Cui de strcpy, strncpy Functions

strcpy, strncpy Functions

The strcpy and strncpy functions copy one null-terninated string to
anot her.

The strcpy function stops copying the source string after the null
character is copied. strncpy specifies a maxi mum nunber of
characters to copy. strncpy truncates or null-pads the source
string depending on the specified nunber of characters to copy.

See Chapter 5.5, "Character Pointers and Functions,” in The C
Progr ammi ng Language for rel ated i nformation on the strcpy function.

Decl ar ati ons:
char *stgl, *stg2, *ret;
char *strcpy(), *strncpy();
int ;

Cal i ng Synt ax:

ret = strcpy(stgl, stg2);
ret = strncpy(stgl, stg2, max);
Ar gunent s:
st gl ==t he destination string
stg2 —the source string
max —the exact number of characters to copy fromthe source
string
Ret ur ns:
ret ==points to the first string

Not e: if the source string exceeds the specified nunmber of
characters to copy, the destination string is not null-term nated.

3- 57

C Language Programmer's Cui de strlen Function

strlen Function

The strlen function returns the I ength of a null-terminated string.
See Chapter 2.3, "Constants,"” and 5.3, "Pointers and Arrays," in The
C Programmi ng Language for additional information.

Decl ar at i ons:

char *stg;
int len, strlien();

Cal ling Syntax:

len = strlen(stg);

Ar gunent s:

Sty =—points to a string

Ret ur ns:

| en ===t he string |ength

3-58

C Language Progranmer's Gui de swab Function

swab Functi on

The swab function copies one area of nenory to another. The high
and | ow bytes in the destination copy are reversed. The nunber of
bytes to swap nust be an even nunber. See Chapter 5.2, Pointers and
Fu?ction_ Argunments,” in The C Programm ng Language for related
i nfornmati on.

Decl ar ati ons:
i nt ret, swab();

char *from *to;
i nt nbyt es;

Cal I i ng Synt ax:

ret = swab(from to, nbytes);

Argunent s;
from -- the address of the source buffer
to -~ the address of the destination

nbytes —the number of bytes to copy

Ret ur ns:

ret =——=swab al ways returns O

3-59

C Language Programrer's Cuide tan, atan Functions

tan, atan Functions

The tan function returns the trigononetric tangent of a doubl e-
preci sion floating-point number. The atan function returns the
trigononetric arctangent of a double-precision floating-point
number. You nust express all argunents in radians.

Decl ar at i ons:
doubl e val;
doubl e ret;

doubl e tan();
doubl e atan();

Cal |'i ng Synt ax:

ret = tan(val);
ret = atan(val);
Ar gunent s:

val -=—adoubl e-precisionfloating-point nunber that expresses
an angle in radians

Ret ur ns:
ret =—=the tan or arctangent expressed in radians of the
argurent val ue

Note: you can Pass numbers declared as either float or double to
tan andd aélan. If you pass a float, Cw Il automatically convert it
to a double.

3-60

C Language Programmer's Cuide toascii, tolower, toupper

toascii, tolower, toupper Functions

The toascii, tol ower, and toupper functions are character conversion
functions inplemented as macros in the include file CTYPEH You
must include CTYPE H in any program that uses any of these three
functions. Do not declare functions that are inpl emented as Macros.
Argunents that involve side effects might work incorrectly and
shoul d be avoi ded.

The tolower function converts an uppercase letter to the
corresponding | owercase letter. The toupper function converts a
| onercase letter tothe corresPondi ng uppercase |letter. . The toascii
function sinply turns off all bits in a character representation
that are not part of a standard ASCI| character. toascii is
provided for conpatibility with other systens.

Decl ar ati ons:
#incl ude <ctype. h>

int ret;

Cal I'i ng Synt ax:

ret
ret
ret

t ol ower (cnhar acg]
t oupper (charac);
toascii(charac);

Ar gunent s:

charac —a single character to convert

Ret ur ns:

ret —— the converted character

Not e: tolower and toupper can accept character argunments
represented by integers in the range 0 to 2S5.

3-61

C Language Programer's Cui de ttynane Function

ttyname Function

The ttyname function returns a pointer to the null-term nated
filename of the console device associated with an open file
descriptor.

Decl ar ati ons:
char *name, *ttynane();

int fd;

Cal l'i ng Synt ax:

name = ttynane(fd);

Ar gunent s:

fd —an open file descriptor

Ret ur ns:

nane = f the file descriptor is open and attached to the
CP/ M 86 consol e devi ce, the function returns a pointer
to the null-termnated string CON. CQherw se, the
function returns a NULL character.,

3-62

C Language Progranmrer' s Qui de ungetc Function

unget ¢ Functi on

The ungetc function pushes a character back to an input stream The
next getc, getw, or getchar operation incorporates the character.
One character of buffering is guaranteed if sonething has been read
from the stream The fseek function erases any pushed back
characters. You cannot use ungetc with EOF (-1). See Chapter 7.9,
"Some M scel | aneous Functions,” in The C Progranmi ng Language for
related information.

Decl ar ati ons:
char charac;

FILE *stream
I nt ret, ungetc();

Cal li ng Synt ax:

ret = ungetc(charac, strean;

Ar gunent s:
charac ==t he character to push back
stream -- the stream address
Ret ur ns:
ret —=If the character is successfully pushed back, the

function returns charac. If an error occurs, the
function returns -1

3-63

C Language Programmer's Qui de unlink Function

unl i nk Function

The unlink function deletes a nanmed file fromthe file system The
functionfailsif thefile is openor nonexistent. See Chapter 8.3,
"Qpen, Creat, Cose, Unlink," in The C Programming Language for
related information,

Decl ar at i ons:

i nt ret, unlink();
char *nane;

Cal I'i ng Synt ax:

ret = unlink(nane);

Ar gument s:

name ——=points to a null-terninated filename

Ret ur ns:

ret -—=0 if the function succeeds, or =1 if the function fails

3-64

C Language Programmer's Gui de wite Function

write Function

The wite function transfers data to a file opened with a file
descriptor. Transfer begins at the present file poi nter, as set by
previous transfers or by the |seek function. You can wite any
arbitrary number of bytes to the file. The nunber of bytes actually
witten returns. |f the number of bytes written does not match the

nunber requested, an error has occurred.

Under CP/ M 86, the nost efficient wites begin and end on 128- byte
boundari es.

See Chapter 8.2, "Low Level I/O—Read and Wite," in The C
Programm ng Language for related information.

Decl ar at i ons:
int ret, wite();
int]
char *buffer;
unsi gned byt es;

Cal l'i ng Syntax:

ret = wite(fd, buffer, bytes);

fd ==t he open file descriptor
buf f er —=t he starting buffer address
byt es =t he nunber of bytes to wite

Ret ur ns:

ret -~ the nunber of bytes actually witten, or -1if anerror
occurs

Note due to the buffering scheme used, some data night not be
witten to the file until the file is closed

End of Section 3

3-65

Section 4
Input/Output Conventions

In C, all input and output is done by reading and witing files.
Even é)eri pheral devices such as your terninal are treated as files
inaCprogram A Cprogramcan access files in two different ways:
as a regular file or as a stream file. C provides three
i nput/output files called the standard I/O files that sinplify
i nput/ out put to your terminal and other common I/ O sources.

The C Progranmi ng Language does not use the terns regular and
siream However, the manual provides conpl ete descriptions of both
thes of file access. Inthis section, we refer to the appropriate
chapters in The C Progranmm ng Language that contain additional
i nf ormation.

4.1 Regular File Access

Regular file access is considered | owlevel I/O because it provides
no added services, such as data buffering. Regular access is a
direct entry into the operating system See Chapter 8.2, "LowLevel
|/ O—=Read and Wite," in The C Progranming Language for nore
information on lowlevel 1/Q

To create adisk file for regul ar access, use the creat, creata, and
creatb functions. Al three functions return a uni que nurmber called
afile descriptor. The file descriptor is a positive short integer
used to identify the file in a C program Under CP/M86, the file
descriptor can range fromO to 15. Refer to Chapter 8.1, "File
Descriptors,” in The CProgranm ng Language for nore infornation on
file descriptors.

Use creat and creata to create ASCII files and creatb to create
binary files. CP/M86 stores ASCI| fileswith acarriage return and
line-feed at the end of each line and a CTRL-Z character (xla) at
the end-of-file. However, Cprogranms under UNI X normally end |ines
with only a line-feed and do not nmark the end-of-file. This neans
that for C programs under CP/ M86 to be conmpatible with C prograns
under UNI X the read and write functions for ASCII files respectively
delete and insert carriage return characters. Al so, the read
functions for ASCI|I files delete the termnating CTRL-Z, and the
close functions for ASCII files insert the CTRL-Z at the end-of-
file. For binary files under CP/ M 86, there is no automatic way to
detect or mark the end-of-file. The programmust keep track of the
end-of-file position.

Use the open, opena, and openb functions to open existing files for
regul ar access. All three functions return afile descriptor. You
cannot use these functions to create new files,

C Language Programer's Qui de 4.1 Regular File Access

The fol lowing list contains all the systemlibrary functions youcan
use for regular file access.

Functions for Regular File Access

cl ose creath opena tell
cr eat | seek openb unl i nk
creata open read wite

4.2 StreamFile Access

Unlike regular file access, streamfile access enploys a form of
| ocal buffering, making single-bytel/Onoreefficient. Streamfile
access USes a 512-byte buffer,” which corresponds to a physical
bl ocksi ze on many peripheral devi ces.

Astreamis identified by a pointer toadata control structure that
contains all the information relevant to the stream Refer to
Chapter 7.6, "File Access," in The C Progranming Language for
addi tional information.

The fol lowing list contains all the systemlibrary functions you can
use for streamfile access. The page nunber refers to the function
descriptions in Section 3.

Functions for Stream Fi |l e Access

fcl ose f opena f scanf printf
fdoPen f openb f seek put c
feo fprintf ftell put char
ferror fputc fwite put |
fflush fputs getc puts
fgetc fread get char put w
fgets freopen get| rew nd
fileno freopena gets scanf

f open freopenb getw unget c

C Language Progranmer 's Qui de 4.3 Peripheral Devices

4.3 Peripheral Devices

Peripheral devices, such as your ternminal or printer, are treated as
filesinC Like UNIX, peripheral devices under CP/ M 86 use speci al
nanes for identification in a program

e CON stands for a consol e device.
® LST. stands for a listing device.

4.4 Standard I/OFiles

C provides three files that sinplify 1/O procedures from conmon
sources, such as your ternminal. The three files are the standard
input, standard output, and standard error files. You can access
these files as either regul ar or streamfiles. A C program begins
execution with all three files open and initially connected to your
termnal. Therefore, a program can handle terninal 1/0O without
having to open files explicitly, As described below, you can
indicate a source other than the termnal and redirect 1/Owth the
< and > characters.

The standard I/ Ouses routines fromthe systemlibrary, CLEAR The
file STDIQ H contains certain macro definitions and vari abl es used
by the systemlibrary routines for opening, closing, reading, and
witing the standard I/Ofiles. You nust include STDIQH in any
source programthat references a systemlibrary function. Remenber,
STDIQ H already includes the portability file PORTAB H Table 4-1
shows the definitions in STDIQH for the standard 1/Ofiles. You
can list STDIQH to exanmine the entire file.

Table 4-1. Standard I/O File Definitions

File | File Descrinptor St ream Nare
standard i nput 0 stdin
[standard out put 1 st dout
| standard error 2 stderr

You can redirect the flow of standard input and output from a
command line using the < and > characters. Specify a filenane or
device after the < character to indicate an i nput source other than
thetermnal. The follow ng exanpl e executes a fil e naned PROG C\VD,
with the standard input coming froma different file named | NDAT.

prog ci ndat

C Language Programmer's Cui de 4.4 Standard I/OFiles

Specify a filename or device after the > character to indicate an
out put “destination other than the termnal. The follow ng exanple
executes a file named PROG CMD with standard input coming from a
gifferent file named | NDAT and standard output going to the list
evice:

prog <i ndat >|st:

Refer to The C Programming Language for nore information on /0
redirection.

End of Section 4

Section 5
Assembler Routine Interfacing

RASM 86 i s an 8086/ 8088 rel ocat abl e assenbl er that uses a conpati bl e
subset of the ASM 86" assenbly |anguage. You can use RASM 86 to
wite assenbly |anguage prograns that interface with C nodul es.
RASM 86 generates rel ocatable object files conpatible for Iinking
with LINK-86, Refer to your Programer's Utilities Guide for
conpl ete expl anati ons of RASM 86 and LT NK-86.

Thi s section defines the conventions and gui del i nes you nust observe
toproperly interface Cfunctions with assenbly |anguage routines.
Section 5.4 presents a RASM 86 routine to assenble and a sanple C
nodul e that F3]/0u can link with the routine, The information
presented in this section is for the experienced assenbly | anguage
progranmmer.

5.1 External Nami ng Conventions

Narmes for external functions and varibles are significant up to
eight characters in Digital Research C, although you can use man

more characters. The nunber of significant characters in externa

names varies for different conpilers. For exanmple, UNI X Cconpilers
pl ace an underscore character at the beginning of all external
nanes, effectively making the nanes significant to seven characters
only. For portability considerations, it is preferabletolint all
external nanes to seven significant characters.

Di gital Research C does not prefix an underscore on external names.

However, certain routines in the system library have one or two

underscores preceding the function name. You nust not attenpt to

reference these routines directly with the exception of _exit. They

iarg designed for access internally by other functions in the
i brary.

RASM 86 converts all characters to uppercase unless you use the
RASM 86 $nc switch. However, the C conpiler distinguishes between
uppercase and |owercase. Therefore, you nust use all uppercase
characters to specify assenbler function names and to declare
assenbly routine variables in your C source code. The follow ng
exanpl es show sone proper and inproper external nanes:

ASMLROUTI NK() Proper function name. C conpiler recognizes
the nane as ASM ROUT.

asm routine() | nproper function nane. RASM 86 converts the
name to uppercase unl ess you use the RASM 86
$nc switch.

5-1

C Language Programmer's Qui de 5.1 External Naming Conventions

int CALCVALUE, Proper variable name. C conpiler truncates

the name to CALCVALU.

int CALC VALUE; Proper variable name. C conpiler truncates

the name to CALC VAL.

int calc_val; | nproper vari abl e name. RASM 86 converts the

name to uppercase unless you use the RASM 86
$nc switch.

5.2 Calling an Assenbly Routine froma C Mdul e

Three steps are required to call an assenbly | anguage routine froma
C nodul e

1)

2)

3)

Decl are the function names external in the C source code
using the C language extern declaration. Refer to Chapter
1.10, "Scope: External Variables," in The C Programing
Language for nore information on C external declarations.

Remenber, RASM 86 converts all characters to uppercase
unl ess you use the RASM 86 $nc switch. Therefore, function
nanes decl ared in the C programnust be in uppercase if you
do not use the switch, For exanple, the following C

]glecl arations specify FUNC_1, FUNC.2, and FUNC.3 as ext er nal
unct i ons:

extern int FUNC();
extern i nt FUNC_2() ?
extern long FUNC.3();

Decl are the function names PUBLIC in the assenbly routine
using the RASM 86 PUBLIC directive. Refer to Section 3.7
inthe Programmer's Wilities Guide for information on the
PUBLI C directive.

PUBLIC FUNC_1
PUBLIC FUNC.2
PUBLIC FUNC 3

Call or reference the assenbly routines fromthe C nodul e.

C Language Programmer 's Qui de 5.3 Calling a C Mdul e

5.3

Calling a C Module from an Assenbly Routine

Two steps are required to call a C function from an assenbly
routi ne:

54

1) Declare the C function names external in the assenbly
routine using the RASM 86 EXTRN directive. Refer to
Section 3.8 in the Programmer's Utilities Guide for
information on the EXTRN directive. The folTow ng RASM 86
di recti\lle statements speci fy FUNGC.1, FUNC_2, and FUNC_3 as
external :

EXTRN FUNC_1: NEAR
EXTRN FUNC_2: NEAR
EXTRN FUNC_3: NEAR

Notice that the functions are | abel ed NEAR i n the preceding
EXTRN directives. You nust use the NEAR | abel for nodul es
designed according to the 8086 small menory nodel. For
nodul es designed according to the big nenmory nodel, you
nust use the FAR | abel.

2) Call the Cfunctions fromthe assenbly routine. Notice that
you do not have to explicitly declare the C functions as
public in the C code.

Argunent Passing

The followi ng conventions apply to the passing of arguments in C

C functions pass argunents on the hardware stack.

The conpiler places each argunent on the stack reading from
right to left.

Al argunents pass by val ue.

Argunments that evaluate to one byte pass as a word value with
the loworder byte of the word containing the one-byte val ue.

Miul tiword val ues such as long integers, floats, and doubl es,
pass with the high-order words pushed before the |oworder
wor ds.

The cal | ed assenbly routine nust save and restore the contents
of the SI and DI registers if the routine uses those registers.

5-3

C Language Programmer's Cui de 5.4 Argunent Passing

e Under the snall nermory nodel, a pointer is awrd that contains
an offset value. Under the big nmenory nodel, a pointer is a
doubl e word t hat contai ns an of fset value in the | oworder word
and a segnment nunber in the high-order word. Wen a big nodel
Ppi nter is passed as an argunent, the high-order word i s pushed

irst.

e Calls to assenbly functions under the big nodel use far calls
and returns. Calls to assenbly functions under the small nodel
use near calls and returns.

When a C programcalls a C function or an assenmbly routine, the
compi l er generates a standard entry/exit protocol that perforns
necessary nanipul ation of register contents, The extry/exit
protocol is shown bel ow

FUNCTI O\ ;start of entry protocol
PUSH BP :save ol d franme pointer
MOV BP,SP 7set up new frane pointer
PUSH DI ;save register variables in DI and Sl
PUSH S
SUB SP,nnn ;allocate any necessary |ocal variables

;end of entry protocol
. (the called function body)

:start of exit protocol

LEA SP,-4[BP] ;reset stack pointer for pop
POP Sl :restore register variables
POP DI

POP BP yrestore frame pointer

RET :use RETF for big nodel

Figures 5-1 and 5-2 show the stack upon entry to a hypothetical
assenmbl y | anguage function named TESTFUNC. Figure 5-1 shows the
stack for the small nenory nodel. Figure 5-2 shows the stack for
Ehle bi g nodel . TESTFUNC has six parameters to pass as shown
el ow

TESTFUNQ var _a, var_b, var_c, var.d, var_e, "greetings")

The variables var_a through var_e have the follow ng type
definitions:

int var._a;

| ong var _b;
char var_c?
float var_d?
doubl e var _e;

5.4

C Language Programmer's Quide

The conpiler
"greetings",

5.

4 Argunent Passing

OFFSET FROM

STACK

CALLER BP +0
RETURN ADDRESS +2
VAR_A WORD VALUE +4
VAR_B LOW WORD *6
VAR_B HIGH WORD ~8
VAR_C WORD VALUE +10
VAR_D WORD 0 (LOW) +12
VAR_D WORD 1 +14
VAR_D WORD 2 +16
VAR_D WORD 3 (HIGH) +18
VAR_E WORD 0 (LOW) +20
VAR_E WORD 1 +22
VAR_E WORD 2 +24
VAR_E WORD 3 (HIGH) +26
POINTER TO "greetings” +28

Figure 5-1. Stack for Snall

REGISTER BP

Model

OFFSET FROM

STACK REGISTER BP

CALLER BP +0

RETURN ADDRESS LOW WORD +2

RETURN ADDRESS HIGH WORD | +4

VAR_-A WORD VALUE +6

\PAR_B LOW WORD +8

VAR_B HIGH WORD +10
VAR_C WORD VALUE +12
VAR_D WORD 0 (LOW) +14
VAR_D WORD 1 +16
VAR_D WORD 2 +18
VAR_D WORD 3 (HIGH) +20
VAR_E WORD 0 (LOW) +22
VAR_E WORD 1 +24
VAR_E WORD 2 +26
VAR_E WORD 3 (HIGH) +28
POINTER TO "greetings” +30

Figure 52 Stack for Big Mdel

statically allocates space for .)
and passes a pointer to this static location as

the string constant

indicated in Figures 5-1 and 5-2. Note that floats always convert
to doubl e before being passed as argunents.

5-5

C Language Programrer's Guide 5.4 Argunent Passing

Remenmber, under the small nodel, a pointer is a word value. The
value is an offset fromthe data segment base address. Under the
bi g model, a pointer is a double word value. The high-order word is
the segment base address. The loworder word is an offset fromthe
segment base address.

Unl i ke nost | anguages i npl emented for the 8086/8088, the calling C
routine removes the arguments fromthe stack after returning from
the called routine. The conpiler generates an ADD SP, <nnn>
instruction in the C programinmedi ately following the call to the
assenbly routine. The <nnn> stands for the nunber of bytes pushed
onto the stack. The instruction nodifies the stack pointer,
effectively renoving the arguments. |f you call a Croutinefroman
assenbly routine, you nust nodi fi/] the stack pointer explicitly in
the assenbly routine to renove the argunents.

5.5 Function Return Val ues
The val ues that a function returns are passed back to the calling

program in certain registers. Table 5-1 shows which registers
contain the return values for each C data type.

Table 5-1. Function Return Registers

Data Type Regi sters

int, char, short,
poi nter (small nodel)

long, float, Hi gh word in BX (segment for pointer)
poi nter (big nodel) -
Low word in AX (offset for pointer)

doubl e Hi gh word in DX
High nmiddle word in CX
Low middl e word in BX _
Low word in AX _‘

5.6 Accessing External Data

The Cconpi | er places each C programvariabl e declared explicitly or
inplicitly external into a data segment with the comon attribute.
To access external variables froman assenbly nodul e, or to define
such vari abl es i n an assenbly nodul e for access froma C nodul e, you
must define each variable as a separate common data segment in the
assenbly nodul e. Consequently, the variable name becones the
segnent nane in the assenbly nodule., You cannot reference segment
names in an assenbly routine. Therefore, you nust assign new
vari abl e names and all ocate space for each one. Three steps are
required to access external data.

C Language Programer's Guide 5.6 Accessing External Data

1)

2)

Declare the variables that the C programis to share with
the assenbly routine as external variables in the C source
program For exanple, consider a hypothetical assenbly
| anguage function call froma C program

ret = NEXTFUNG(VAR 1, VAR 2, VAR 3, VAR 4, VAR 5)

NEXTFUNC and its five parameters nust be decl ared external
inthe calling C program Renmenber, RASM 86 converts all
characters to uppercase unless you use the RASM 86 $nc
switch.

extern float NEXTFUNQ))?

extern int VAR.1?
extern long VAR.2?
extern char VAR_3;
extern float VAR 49
extern doubl e VAR_S5;

Decl are TESTFUNC as PUBLIC in the assenbly routine. Then
decl are each parameter as a separate data segment within
the assenbly routine. You cannot declare the variables
PUBLIC in the assenbly routine. You nust declare each data
segnent with a RASM 86 COVWON conbine type. Refer to
Section 3.2.3 in the Programer's Utilities Guide for nore
i nformation on conbi ne types.

Once the variable names are declared as segnents, you can
not reference them as local variables in the assenbly
routine. Therefore, if you plan to reference the variabl es
as local in the routine, you nmust assign different nanes
for proper access. Also, you nust allocate storage for the
vari ables using the appropriate RASM-86 allocation
directives. Refer to Sections 3.14 through 3.17 in the
Programmer's Utilities Guide for information on allocation
directives.

PUBLI C TESTFUNC

VAR 1 DSEG COMMON
VAR ONE RW1
VAR_2 DSEG ~ COVVON
VAR TWO ~ RW2
VAR_3 DSEG COMVON
VAR THREE RB 1
VAR_4 DSEG COWON

VAR FOOR RW2

C Language Progranmer's Cui de 5.6 Accessing External Data

3)

VAR.5 DSEG ~ COMVON
VAR FIVE RwW4

Goup all the COMWON data segnents together into the data
group (dgroup) using the RASM 86 GROUP directive. Refer to
Section 3.3 in the Programmer's Utilities CGuide for nore
i nformation on the GROUP directive.

DGROUP GROUP DATA, VAR I, VAR 2, VAR 3, VAR 4, VAR 5

End of Section 5

Section 6
Internal Data Representation

There are four fundamental data types in the C |anguage:

char act er

i nt eger

si ngl e-preci sion floating-point
doubl e- preci si on fl oating-poi nt

Thi s section describes the internal datarepresentationthat Digital
Research C uses for each type.

6.1 Character Storage

C stores a character value as a single, 8-bit, unsigned binary
nunber , as shown in Figure 6-1 Character values are always
positive integers ranging from O to 255. Use the declaration
keyword char to declare character data.

f
X X X X X X X
6o A=3En2]

o x<p

BITS

Figure 6-1 Character Storage

6-1

C Language Programmer’'s Quide 6.2 Integer Storage

6.2 Integer Storage

There are two different sizes for integers:. short and long. Short
i ntegers can be either signed or unsigned. C stores a short signed
integer value as a 16-bit, two's conpl enent binary nunber. Short
signed i ntegers range from-32768 to +32767, inclusive. You can use
the keywords int or short to declare short signed integers. Use the
keyword wunsigned with int to declare unsigned short integers.
Unsigned integers range from O to 65535. Figure 6-2 shows the
storage format for short integers.

~—HIGH MEMORY LOW MEMORY =

HIGH ORDER
BYITE |

|
X X X X X X X
6.5 43k 258415510

~J D<=

[i
X X X X X X X X
15 14 13 12 11 10 9 8

Figure 6-2 Short Integer Storage

Cstores along integer as a 32-bit, two's conpl enent bi nary nunber,
as shown in Figure 6-3. Long integers are always signed numbers
ranging from-2147483648 to +2147483647. Use the keyword long to
declare long integers. C does not inplenent unsigned |'ong integers.

~+—HIGH MEMORY LOW MEMORY ==+
BYTE 3 BYTE 2 BYTE 1 BYTEO

[4 =l : {18 : -3 . 1

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

31 24 23 16 15 8 7 0

Figure 6-3. Long Integer Storage

6-2

C Language Programrer' s Gui de 6.3 Single-precision

6.3 Single-precision Floating-point

C stores a single-precision floating-point nunber in four
consecutive bytes using the | EEE format. The 32-bits contain three
fields as shown in Figure 6-4: a sign bit, an 8-hit biased
exponent, and a 23-bit mantissawith a 24th inplicit normalized bit.

The nornalized bit is always 1 for nonzero nunbers. The bit is
recogni zed inplicitly and is not stored. The binary point Is
situated tothe i mediate right of the inmplicit nornalized bit. The
exponent has a bi as of 7F hexadeci mal (127 decimal). Therefore, the
hexadeci mal number 80 represents an exponent of +1L The hexadeci mal
nunber 7E represents an exponent of -1. The mantissa is precise to
7 decimal digits. Single-precision floating-point nunbers range
from1.18 times 10 to the mnus 38th power up to 3.40 times 10 to
the 38th power (1.18%10%**-38 <=|y <=3.40%*10%*38).

~+—~HIGH MEMORY LOW MEMORY —

BYTE 3 BYTE 2 BYTE1 BYTE O
1 . 1 1 1

I Il Nl 1 I |

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

31 30 23 22 0

\ . 1 J

BIASED
EXPONENT MANTISSA

SIGN
BIT

Figure 6-4. Single-precision Floating-point Storage

6.4 Doubl e- preci sion Fl oating- poi nt

C stores a doubl e-precision floating-point number in eight
consecutive bytes using the | EEE format. The 64-bits contain three
fields: a sign bit, an 11-bit biased exponent, and a 52-bit
mantissa with a 53rd inplicit normalized bit.

The normalized bit is always 1 for nonzero nunbers. The bit is
recogni zed inplicitly and is not stored. The binary point is
situated to the inmediate left of the inplicit normalized bit.

C Language Programmer's Gui de 6.4 Doubl e-precision

The exponent has a bias of 3FF hexadecimal (1023 decinal).
Therefore, the hexadeci mal nunber 400 represents an exponent of +1.
The hexadeci mal nunber 3FE represents an exponent of -1. The
mantissa |S precise to 15 decimal digits. Doubl e- preci si on
fl oating-poi nt nunbers range from9.46 tines 10 to the m nus 308th
power up to 1.80 tinmes 10 to the 308th power (9.46*10**-308 <= | §
<= 1.80*10**308). C performs all floating-point arithmetic in
doubl e-precision. Figure 6-5 shows the format for doubl e-precision
fl oating-poi nt nunbers.

Wien a programspeci fies singl e-precision nunbers in an expression,

C pads the fractional ortion of those nunbers with zeros,

effectively |engthening the nunbers to doubl e-precision, Wen a

doubl e- preci si on nunber converts to single-precision, Cfirst rounds

lthe dohubl e-preci sion nunber before truncating it to single-precision
engt h.

HIGH MEMORY LOW MEMORY
BYTE ? BYTE 6 BYTES BYTE 4 BYTE 3 BYTE 2 BYTE 1 BYTE O

{5 | 1 1 R e (e JEaas

I [[| 1 il | & il B |
XXXXXXXX 00000000 XXXXXXXX 00000000 XXXXXXXX 00000000 XXXXXXXX 00000000

L J 1 |
63] 52 0

BIASED MANTISSA

EXPONENT

|

|

|

L SIGN
BIT

Figure 6-5. Doubl e-precision Floating-point Storage

6.5 Pointer

In small nodel, a pointer is represented as a 16-bit offset. The
associ ated segnment is the data segnent, in register DS, In big
nodel , a pointer is represented as a 32-bit value: a 16-bit of fset
and a 16 bit segnent. Also, in big nodel, the heap can be nore than
64K bytes, but no individual allocation on the heap can be Iarger
than 64K bytes because the offset is only 16 bits.

End of Section 6

6-4

Section 7
Overlays

This section describes how to use LINK-86 to create programs that
consist of separate files called overlays. The advantage of
overlays is that they share the same menory |ocations, S0 you can
wite large prograns that run in a limted menory environnent.
Overlay files have a filetype of . OVR

The nodul ar desi gn provi ded through overl ays enabl es you to wite a
| arge proPran1that does not need to reside in nemory all at once

For exanple, many application prograns are nenu-driven. The user
sel ects one of a nunber of operations that the programcan perform

The operations are inplemented in separate program nodul es.
Therefore, there is no reason for them to reside in menmory
simul taneously. \Wen an operation conpletes execution, contro

returns to the menu portion of the program The user can then
sel ect another operation. Using overlays, you can divide such a
proaran1into separat e operation subprograns, which can be stored on
di sk and | oaded into memory only when required.

Figure 7-1 illustrates the concept of overlays. Suppose a menu-
driven application program consists of three separate user-
sel ectabl e operations. |f each operation consists of a modul e t hat
requires 30K of nenory and the menu portion requires 10K, then the
total nenory required for the programis 100K, as shown on the |eft
InFigure 7-1L However, if the three operation nodul es are desi gned
using overlays, as shown on the right in Figure 7-1, the program
requires only 40K for execution because all three functions share
the same mendry |ocations at different tines.

C Language Programrer's Cui de 7 Overlays

Operation | 30K
3

Operation | 30K 1 ‘

2 100K Operation Operation Operation

3pK 1 2 3
(overlay 1) (overlay 2) (overlay 3)
40K

Operation | 30K
1

Menu 10K . 10K Menu

W t hout Overl ays Separate Overl ays

Figure 7-1 Using Overlays in a Large Program

You can al so create overlays inthe formof a tree structure, where
each overlay can cal |l other overlays. Section 7.2 describes the
comand |ine syntax for creating nested overlays.

Figure 7-2 illustrates such an overlay structure. The top of the
hi ghest overlay determines the total anount of menory required. In
Figure 7-2, the highest overlay is SUB4. Note that this is
substantially less menmory than would be required if all t he
operation nodul es and suboperation nodul es had to reside in menory
si mul t aneousl y.

C Language Programmer's Qui de 7 Overlays

Sub 4

Sub 1 Sub 2 i Sub 3 |
Overlay 1 Overlay 2 Overlay 3

|

Menu

Figure 7-2. Tree Structure of Overlays

7.1 Witing Prograns That Use Overl ays

There are two restrictions for programs that use overlays, The
first restrictionis that all overlays nust be on the default drive.
The second restriction is that the overlay nanes are determ ned at
compile time and cannot be changed at run-tine.

For exanple, the fol l owing C source J)rogram is a root nodul e naned
MAI N C, which uses one overlay named OVERLAY1.

mai n()

printf("root\n");
overlayl("overlayl\n");
printf("return fromoverlay\n");

OVERLAY! is defined as foll ows:

overlayl(s);
char *s?

printf(s);

C Language Programmer's Quide 7.1 Witing Overlay Prograns

When you pass arguments to an overlay, you nust ensure that the
nunber and type of the arguments match for the calling program and
the overl ay.

Upon execution, the programfirst displays the nessage "root" at the
consol e. The calling statement then” transfers control to the
overlay. Wen the overiay receives control, it displays the message
"overlayl" at the console, OVERLAYl then returns control to t he
next statement in the root.

If the overlay is already in menory when the root calls it, the
overlay manager transfers control directly to the overlay w t hout
rel oading It.

Not e the followi ng constraints:

e The |l abel used in the calling statenent is the actual name of
the .OVR file | oaded by the overlay manager, so the two names
nmust mat ch.

e The nane of the entry point to an overlay need not mat ch the
name used in the calling statenent. You should use the same
name to avoi d confusion.

e Theoverlay manager | oads overlays only fromthe drive that was
the defaul't drive when the root nodule began execution, The
overl ay manager disregards any changes to the default drive
that occur after the root nodul e begins execution.

e The nanes of the overlays are fixed. To change the names of
the overlays, you nust edit, conpile, and relink the program

e No nonstandard statenments are needed in your source program
Therefore, you can postpone the decision on whether or not to
create overlays until link=-tinmne.

7.2 LINK-86 Command Lines for C Overlays

You specify overlays in the LINK-86 command |ine by enclosing each
overlay specification in parentheses. The overlay nmanager is
i ncl uded automatically fromthe CLEAR |ibrary.

You can specify an overlay using any of the fol | owi ng forns:

LI NK86 ROOT (OVERLAY1)
LI NK86 ROOT (OVERLAY1, PART2, PART3)
LI NK86 ROOT (OVERLAY1=PART1, PART2, PART3)

The first form produces the file OVERLAY1.OVR from the file
OVERLAYL OBJ. The second form produces the file OVERLAY1. OVR from
OVERLAY1. OBJ, PART2. OBJ and PART3.0BJ. The third formproduces the
file OVERLAYL. OVR from PARTI. OBJ, PART2.0BJ and PART3. OBJ.

7-4

C Language Programmer's Cui de 7.2 LINK-86 Conmand Lines

In the coomand line, aleft parenthesis indicates the start of a new
overlay specification and also indicates the end of the group
preceding it. Al files to be included at any overlay nust appear
toget her, without any intervening overlay specifications. You can
use spaces to i nprove readability, and commas can separate parts of
a singleoverlay. However, do not use conmas to set off the overlay
specifications from the root nodule or from each other. Also,
overl ays nmust be last on the command i ne.

For exanple, the follow ng command line is invalid:
A>LI NK86 ROOT(OVERLAYI), MOREROOT

The correct formof the conmand is as foll ows.
A>LI NK86 ROOT, MOREROCOT (OVERLAYI)

To nest overlays, you nust specify themin the conmand line with
nested parentheses as shown bel ow SUB1, SUB2, SUB3, and SUB4 are

nested overlays in the follow ng exanple.
A>LI NK86 NMENU, (FUNCI (SUBI) (SUB2) (FUNC2) (FUNC3(SUB3) (SUB4))

7.3 General Overlay Constraints

The follow ng general constraints apply when you use LINK-86 to
create overl ays:

e Each overlay has only one entry point. The overlay manager
assunmes that this entry point is at the beginning of the
over| ay.

e You cannot nake an upward reference froma nmodule to an entry
point in an overlay that is higher on the tree., The only
exceptionis areference tothe main entry point of the overlay
as descri bed above. You can nake downward references to entry
points in overlays lower on the tree or in the root nodul e,

e Common segnents that are declared in one modul e cannot be
initialized by a nmodule higher in the tree. LINK-86 ignores
any attenpt to do so.

End of Section 7

7-5

Appendix A
System Library Routine Summary

There are two versions of the CLEAR (Conmon Language Environnent And
Run-time) library., CLEAR is configured for both 8086/ 8088 nemory
model s: small and big. Refer to Section 2.4 for a description of
menory nodels. Both CLEAR files are on your C product disks.

e CLEARS L86 (small menory version)
e CLEARL. L86 (big nmenory version)

Most of the nodules in the systemlibrary are accessible directly
fromyour Cprogramusing the appropriate function names. However,
certain routines in the system library are designed for access
internally by other functions in the library and cannot be accessed
explicitly froma program Al nodule names in the systemlibrary
are incapital letters but function names are in | owercase. Modul e
Inages mght vary slightly for different versions of the system
i brari es.

Each function in the system |ibraries perfornms a certain task.
Goups of functions fall into related categories according to what
each one does. For exanple, one group of functions pertains to
stream |/Q Another group operates on strings. There are seven
general categories for system functions.

Regul ar File Access Functions

StreamFil e Access Functions

String Functions

ASCI | Character Macros

Menory Managenent Functions

Doubl e- preci si on Fl oati ng=-poi nt Functions
Uility Functions

The following lists present the system library functions in the
appropriate category. Refer to Section 3 for a conpl ete description
of each function. Renenber, function nanes are in | owercase.

A-l

C Language Programmer's Cuide

A SystemLibrary Routine Summary

Regul ar Fil e Access Functions

StreamFi | e Access Functions

cl ose
creat
creata
creathb
| seek
open

String Functions

clearerr
fcl ose
f dopen
f eof
terror
fflush
fgetc
fgets
fileno
f open

f opena
f openb
fprintf

ASCI |

at of

at oi

at ol

i ndex
nkt enp
ri ndex
sprintf
sscanf
strcat

Char act er

i sal num
i sal pha
| sasci

iscntrl
i sdigit

opena
openb
r ead
tell
unl i nk
wite

fputc
fputs
fread
freopen
freopena
frepoenb
f scant

f seek
ftell
fwite
getc

get char
get |

strchr
strcnp
strcpy
strlen
strncat
strncnp

strncgy
strrehr

i sl ower
i sprint
i spunct
i sspace

A2

gets
getw
printf
putc
put char
put |
puts
put w
rew nd
scant
set buf
unget c

i supper
t oascl |
t ol ower
t oupper

C Language Progranmmer's Gui de

Menory Managenent Functions

Doubl

br k
cal |l oc
free
mal | oc
real |l oc
sbr k
zal |l oc

e- preci si on Fl oati ng- poi nt Functi ons

Utili

atan | og
at of | 0g10
cos sin
exp sqrt
f abs tan

ty Functions

abs _exit
access get pass
BDOS getpid
chrod isatty
chown | ongj np
exit perror

End of Appendix A

A-3

A SystemLibrary Routine Summary

gsort
rand
setjnp
srand
swab
ttynane

Appendix B
Compiler Option Summary

Conmand | i ne option switches are reserved letters that send speci al
instructions to the conmpiler, An option switch specification
consi sts of a dash fol | owed by the option letter. You cannot place
spaces between the dash and the letter. However, you nust place at
| east one space between each dash/ option | etter conbination that you
use in the command line. Option switch specifications nust follow
the source filein the command I'ine. The following table lists the
conpi | er command |ine option switches and a brief descri ption of
each. Notice that certain option swtches require an additional
par anet er.

Table B-1. Conpiler Command Line Options

Option Description

-4 filed I nvoke LI NK86 aut omatically. |fi|es| are
the object files and libraries to link.
Specify the filename and [I] for a LINK86
command |ine input file.

-b Enabl e big menory nodel, (Default is
smal | nodel.)

-d nang Define|narrEL as the value 1. Works |ike
#define in the source code. Defines nanes
in | owercase only.

, -f Use 8087 math coprocessor.
"' -h Suppr ess si gn-on messages.

-] dri vel fS_ellalrch speci fied disk drive for #include

11es.

-j Di sabl e short/long junmp optinm zer,

-11na Generate programlisting. Send listingto

"t | nard . (Default | nang is CON)

-n Di sabl e code optimzer for faster

conpi l ation.

B- |

C Language Programer's Cuide

Tabl e Bl (continued)

Option

Descri ption

-d filenanq

-P

- o nunber|

- | nang

-v| nunber]

-} nunber|

-4 drive

Specify name for object file. |f filenane
does not contain a period, .0BJ will be
appended to fil enane.

Execut e preprocessor nodule only. Place
output in file CTEMP. TOK

Set number of code generator nodes to save
space in synbol table, (Default is 500;
mnimumis 100.)

Request program interlisting (reverse
assenbly). Sepd interlisting to| nang .
(Defaul t'] name| is CON)

Set conpiler nmessage display |evel.
Shoul d appear before other swtches in
command i ne. nunber| can range from1
to 5 to produce the foll'owi ng infornmation:

-vl Display general information nessages
only.

-v2 Display a # character as conpiler
processes each function.

-v3 Display function name as conpiler
processes each function.

-v4 Display start/end nessages for
#include files.

-v5 Display filename and |ine nunber as
conpi | er processes each line.

Set error nessage display | evel. | nunber]
can be 0, 1, or 2

-wO Display all error nessages.

=W Suppress error warning nessages.
-W2 Suppress all error nessages.

Call an assenbly routine to save and
restore registers rather than generate
code to do it in-line. Programconpiles
smal l er but runs slower. Use with small
nodel only.

Pl ace tenporary work files on specified
di sk drive.

B-2

B Conpiler Option Summary

C Language Programmer's Cui de B Conpiler Option Summary

Table B<L (conti nued)

Option Descri ption

q dri ve:| Speci fy | ocati on of conpiler preprocessor
nodul e (DRC860. CVD).

1 drives| Specify location of conpiler parser and
code generator nodul e (DRC86L CMD).

-9 drive Specify location of compiler
|isting/disassenbly file nerge utility
(DRC862. CVD)..

- drive] Specify location of LINK86 (LINK86. C\VD).

End of Appendix B

B-3

Appendix C
Error Messages

Conpi l er error nessages can be divided into two different
categories: error reports and error warnings, Error reports
i ndi cate m stakes in your source proqganm such as syntax errors and
i mproper data type specifications. rror reports include messages
such as "Right brace } is nissing" and "Sane statenent |abel used
nore than once. "

Error warnings effectively indicate that sone error mght occur if
you do not take sone corrective action. For exanple, error nessage
83 is a warning that suggests caution using the indirection operator
with integers. Some warnings, such as number 95 "Subscript is
truncated to short int", sinmply informyou of a certain activity
taking place during conpilation.

You can use conpiler option switch -w to reset the error message
display level. You can have the conpiler display all nessages,
suppress only the warni ng messages, or suppress all nessages. Refer
to Sehction 2.1.3 for information on how to use conpiler option
sw t ches.

Al'l conpiler error messages correspond to an assigned error number.
Table G| presents the Cerror messages listed in nunerical order.
Each entry shows the message text, the mpst common cause of the
error, and a suggestion for fixing the error. Error warnings are
clearly distinguished fromerror reports in Table G1.

Table GI. FError Messages

Error Meani ng

1 Qut of mermory. An allocate function returns NULL.

Conpi | ati on st ops because avai | abl e nenory
is exhausted. Reduce the nunber of
functions conpiled in a single nodule.

2 I dentifier not specified in type or storage class
decl arat i on.

The conpiler read a type or storage cl ass
decl aration keyword, but could not find a
correspondi ng identifier, Correct the
syntax error in the source program

G

C Language Programrer' s Qui de C Error Messages

Table GIl. (continued)

Error Meani ng

3 A public function definition is declared external.

Do not decl are public function definitions
external. Declare the public function
name external using the keyword extern in
any nodule that calls the function.
Renove the keyword extern fromthe public
function definition.

4 Par ent heses () missing in function declaration.

The conpiler read an opening brace {
indicating the start of a function body,
but di d not find acorrespondi ng paranet er
list in the function declaration. You
must place parentheses, (), after the
function name in any function declaration
that does not have paraneters.

5 <identifier...not declared as a function.

The identifier shown in the nessage text
was referenced as a function, The
identifier has been decl ared, but not as a
function. Change the declaration or use
different names for variables and
functions.

6 Two functions have the same nane.

The program uses one function nane to
identify two different functions. Change
one of the function nanes.

7 Conflicting data type specified for a function.

The conpi | er detects conflicting data type
references for a function. This often
happens when a function is declared
inplicitly as an integer and is declared
|ater as returning a noninteger type.
Declare the function to return the
appropriate data type before its first
use.

G2

C Language Programrer' s Gui de C Error Messages

Table GI. (continued)

Error Meani ng

8 Data type not specified in variable declaration.

The conpiler read a vari abl e nane that has
no type or storage class declaration.
Functions automatically default to an
i nteger return value, Declare the
variable name with an appropriate type,
storage class, or both.

9 GI obal variable declared with "register" storage
cl ass.

The register storage class is not
meani ngful for externor static variabl es.
Delete the register storage class in the
vari abl e decl arati on.

10 Conflicting data type specified for a function.

The conpi | er detects conflicting data type
references for a function, This often
happens when a function is declared
inplicitly as an integer and is declared
|ater as returning a noninteger type.
Declare the function to return the
appropriate data type before its first
use.

11 Conflicting storage class keywords in declaration.

The conpiler read a declaration with
conflicting storage cl asses, such as auto
register or static extern. Specify only
one storage class in each declaration.

12 Conflicting data type keywords in declaration

The conpiler read a declaration wth
conflicting data types, such as float int
or long float. Specify only one data type
in each decl aration.

G3

C Language Programer's CGuide C FError Messages

Table G4 (conti nued)

Error Meani ng

13 Use the keywords unsigned/|ong/short with int only.

You can use the type qualifiers unsigned,
long, and short on int data items only.
Change any incorrect declarations in your
source program

14 Do not use the "unsigned |ong" type declaration.

Sone conpi |l ers permt use of the "unsigned
| ong" type declaration. Youcannot use it
inDigital Research C Delete the keyword
"unsi gned".

15 Conflicting type qualifiers "short/long" in
decl aration.

You cannot use the type qualifiers short
and long in the sane variable or function
decl aration, Choose one type qualifier
for each declaration.

16 Conflicting definitions for structure tag
identifier.

The program uses an identifier as a
structure tag. That identifier is already
defined as sonething else. Change the
first declaration of the identifier or
choose a different structure tag.

17 Identifier or left brace { missing in struct or
uni on decl arati on.

Each struct and uni on decl aration requires
either a left brace { or an identifier.
Correct the syntax error in the source
code.

G4

C Language Programer's CGui de C Error Messages

Table GI. (continued)

Error Meani ng

18 Storage class specified in struct or union
decl arati on.

You cannot decl are el enents of a struct or
uni on wi t h storage cl ass keywords (stati c,
extern, register, auto). Delete storage
class keywords in all struct and union
decl arati ons.

19 Data type not specified in struct or union
decl arati on.

Each struct or union declarations nust
contain a data type specification. The
conpi ler did not find one. Specify an
appropriate type

20 Use integer constants to define bit field wdth.

You can use only integers to define the
width of bit fields in a struct or union.
Change the constant to an integer.

21 Conflicting offsets or data type declared for
<identifier>,

In Digital Research C, all struct and
union fiel ds exi st inthe sane nane space.
If you use the nane in multiple
decl arations, each field must be uni que or
exi st at the same offset with the sane

type.

22 A commm or semicolon is mssing.

A required comma or senicolon is mssing.
Correct the syntax error in the source
code.

23 Internal conpiler error.

Conpiler error. Contact the Digital
Research Techni cal Support Center.

G5

C Language Programmer' s Qui de C FError Messages

Table GI. (continued)

Error Meani ng

24 Do not use "static" or "extern" to declare
par anet er s.

You cannot use the storage cl ass keywords
static or extern to declare paraneters,
because paraneters pass on the stack and
cannot be allocated statically. You can
use auto and register in paraneter
decl arati ons. Del ete any | ncorrect
storage cl ass decl arati ons for paraneters.

25 Data type not specified in paraneter declaration.

You must declare a data type for each
paranmeter. Specify an appropriate type.

26 Do not use abstract declarator in parameter
decl ar ati on.

You nust supply a identifier to declare
paraneters. For exanple, "int " is
incorrect, Correct the syntax error in

t he source code.

27 <identifier>...not specified as a paraneter.

The conpiler read a declaration for an
identifier that is not in the list of
paraneters. Probably a syntax or typing
m stake. Correct the syntax error in your
sour ce code or nove the declaration after
the opening left brace.

28 cidentifier>..nust be pointer or scalar.

You cannot declare structures as
paranmeters in Digital Research C Change
your source program

29 ldentifier not specified in parameter declaration

Paraneter declaration syntax requires an
identifier. The conpiler cannot find one.
Co:jrect the syntax error in the source
coae.

G6

C Language Progranmmer' s QGui de C Error Messages

Table GI. (continued)

Error Meani ng

30 Function body is specified as a paraneter.

You can declare functions as paraneters
but those functions cannot contain
statements. Correct the syntax error in
the source code.

31 Use integer constant expression to specify array
bounds.

You nust specify the bounds of an array
with a constant expression that can be
reduced to an integer. Correct the syntax
error in the source code.

32 <identifier>..undefined for "goto" statenent.

A goto statenment references a |abel that
is not defined, Correct the goto
statement or define the | abel.

33 WARNI NG <identifier> is declared, but not
r ef er enced.

The identifier in the nmessage text is
declared but not referenced in the
program This is an ERROR WARNI NG
VESSAGE.

34 <identifier> ..struct or union referenced before
decl aration.

A struct or union variable is referenced
before the struct or union is declared.
Define the struct or union

35 Cannot initialize a function.

You pl aced an equal sign after a function
declaration specifying initialization.
Coarect the syntax error in the source
code.

G7

C Language Programmer's Gui de C FError Messages

Table G 1. (continued)

Error Meani ng

36 Initializing variable with "extern".

You can initialize variables with the
extern keyword. This is allowed in
Digital Research C, but not described by
Kernighan and Ritchie. This is an ERROR
VARNI MESSAGE

37 Array dimensions are extended autonatically.

The syntax (array_nang[<nume] = {... }R is
used, but nore data itens are supplied
than stated in num The size of the array
i s extended. Correct the size declaration
for the array.

38 Switch expression cannot be floating=-point.

The expression in aswtch statenment nust
be nonfloating, Correct the semantic
error in the source code.

39 Cannot read switch statenent, "case <const>"
i gnor ed.

The conpi l er read t he construct "case" but
did not process a switch statenment. The
"case" construct is ignored. Correct the
syntax error in the source code. Possibly
mssing a left brace after the switch.

40 Constant in "case" construct cannot be
f1 oating-point.

The constant expression after the keyword
case is not a standard C |anguage
construct and does not work in Digital
Research C Correct the senmantic error in
t he source code.

Gs8

C Language Progranmer's Qui de C FError Messages

Table G 1. (continued)

Error Meani ng

41 Cannot read switch statenment. "default:" ignored.

The conpiler read a default: construct
but did not process a switch statenent.
The default: construct is ignored.
Correct the syntax error in the source
code. Probably nissing aleft brace after
the switch.

42 Break |location undefined. No |oop or switch.

The conpiler read a break statenent. but
did not process a for/while [oop.
Probably a syntax error, Correct the
source program

43 Continue location undefined. No |oop or swtch.

The conpi |l er read a conti nue statenment but
did not process a for/while Ioog.
Probably a syntax error. Correct the
source program

44 ldentifier not specified in "goto" statenent.

An identifier is required after a goto
statement. The conpiler did not find the
identifier. Correct the syntax error in
t he source code.

45 Same statenent |abel used nore than once.

You used the sane | abel nore than once in
afunction. Correct the semantic error in
the source code.

46 <identifier>...defined nore than once.

The same variable or function name is
defined nore than once in the sane
conpilation, Correct the error in the
source program

Go9

C Language Programrer's Cuide C Error Messages

Table G1. (continued)

Error Meani ng

47 cidentifier> ..Undefined identifier.
The program references an

in the source program

identifier
before it is defined, Correct the error

48 Unexpected end-of-file (EOF) on input file.

A mispl aced end-of-file s detectedonthe
input file. Probably m smatched braces.
Correct the error in the source program

49 Conma Or semicolon is missing.

source program

Syntax error. Correct the error in the

50 Right brace } is missing.

source program

Syntax error. Correct the error in the

51 Left brace { is nissing.

source program

Syntax error, Correct the error in the

52 Right parenthesis) is nissing.

source program

Syntax error. Correct the error in the

53 Right square bracket] is missing
decl arati on.

Syntax error in array declaration.
Correct the error in the source program

in array

G 10

SsJ

C Language Progranmmer's Gui de

C Error Messages

Table GI. (continued)

Error Meani ng

54 Function paraneters cannot have paraneters,
The conpiler read a paraneter declaration
for anidentifier that already exists as a
parameter to a function, “Correct the
error in the source program

55 Right parenthesis) is mssing.
Syntax error. Correct the error in the
source program

56 Do not list paraneters in the function declaration.
You cannot |ist identifiers between the
parentheses i n a function decl aration such
as int f(), List the identifiers in the
function body definition. Correct the
error in the source program

57 Conmm or semicolon is mssing.
Syntax error. Correct the error in the
source program

58 Right brace } is missing.
Syntax error, Correct the error in the
source program

59 Conmm or semicolon is mssing.
Syntax error. Correct the error in the
source program

60 Semicol on is missing.
Syntax error. Correct the error in the
source program

Gl

C Language Programmer's Qui de C Error Messages

Table C4. (continued)

Error Meani ng

61 Too many initializers. Right brace } is nissing.

You specified nmore initial values than
variabl e | ocations. Correct the error in
the source program

62 Left parenthesis (is mssing.

Syntax error. Correct the error in the
source program

63 Keyword "while" is missing in "do... whi | e"
construct.

Probably m smatched braces. Correct the
error in the source program

64 Colon is nissing.

Syntax error. Correct the error in the
source program

65 Internal conpiler error. Bad constant |oad.

Internal conpiler error. Contact the
Di gi tal Research Technical Support Center
i f this nessage di splays isolated fromany
ot her error mnessages.

66 Internal conpiler error. Unknown pointer size.

Internal conpiler error. Contact the
Di gi tal Research Technical Support Center
i f this nmessage displays isolated fromany
ot her messages.

67 Use operators ++and —on i nt/ char/ 1 ong/ short only.

You used ++ and ——operators on function
pointers. Correct the semantic error in
the source code.

G12

C Language Programmer's Cui de C Error Messages

Table G1. (continued)

Error Meani ng

68 MESSAGE SPACE RESERVED

69 MESSAGE SPACE RESERVED

70 MESSAGE SPACE RESERVED

71 Cannot return certain types of expressions.

The conpiler read a return statenment but
can not return certain types of
expressions, such as whole structures.
Correct the semantic error in the source
pr ogr am

72 Internal conpiler error.

Internal conpiler error. Contact the
Di gital Research Techni cal Support Center.

73 Use constant expression to initialize static and
extern vari abl es.

You can initialize statically allocated
vari abl es Wi th a const ant expression only.
A statically allocated variable is one
declared either static or extern. You can
initialize automatic variables wth
nonconst ant expressions, Correct the
semantic error in the source program

74 MESSAGE SPACE RESERVED

75 MESSAGE SPACE RESERVED

76 Variable is not |arge enough to hold a pointer.

You specified a variable that is not |arge
enough to hold a pointer. For exanple, a
char” variable was specified to hold an
array name. Correct the semantic error in
the source program

G 13

C Language Programer's CGuide C FError Messages

Table G 1. (continued)

Error Meani ng

77 Variable too large to hold initial value.
You specified a variable that is not |arge
enough to hold the initial value. Correct
the semantic error in the source program

78 O fsets into other segnents not inplenented.
Internal conpiler error. Contact the
Di gi tal Research Techni cal Support Center.

79 Wth pointers, only use operators: + - ++ -=
You speci fied incorrect operators for use
with pointers. Correct the semantic error
in the source program

80 MESSAGE SPACE RESERVED

81 Invalid paraneter expression.
Internal conpiler error. Contact the
Di gi tal Research Techni cal Support Center
i f this nessage displays isolated fromany
other error nessages.

82 MESSAGE SPACE RESERVED

83 WARNING Indirection for non-pointers is not
portabl e.
I ntegers can be indirected successfully in
Di gital Research C(small nodel only) and
PDP-11 C This is an ERROR WARNI NG
MESSAGE.

84 Cannot add arrays or structures, Do not use +

operator wth arrays.

The program attenpts to add arrays.
Correct the semantic error in the source
pr ogram

G 14

C Language Programer's Cui de C FError

Table GI. (continued)

Messages

Error Meani ng

85 MESSAGE SPACE RESERVED

86 Use only += or -= operators with pointers.

You cannot use certain assignnent
operators, such as /=, in an expression
that involves a pointer, Correct
semantic error in the source program

t he

87 Colon is mssing.

par ent heses.

Syntax error. Correct the error in the
source program

88 Cannot add pointers. Do not use + operator with

poi nters.

The addition operator, +, is used in an
expression with two pointers. You cannot
add pointers. Subtraction is acceptable.
Correct the semantic error in the source
program

89 I ncorrect expression syntax.
Syntax error. Correct the error in the
source program, Oten nismatched

|ist.

source program

90 Commm or right parenthesis expected in parameter

Syntax error. Correct the error in the

91 Expression is missing before [operator.

the source program

An |value expression of type array or
pointer is required on the left of the [
operator. Correct the senmantic error

in

Gl5

C Language Progranmer' s Quide C Error Messages

Table G 1. (continued)

Error Meani ng

92 An lvalue is required before [operator.
An expression of the wong type exists on
the left of the [operator, The
expression nust be an array or pointer.
Correct the semantic error in the source
program

93 Array or pointer required on |eft of [operator.

See error 92

94

Array or pointer required. Cannot subscript.

See error 92

95

WARNI NG

Subscript is truncated to short int.

In the 8086 inplenentation Sf C a single
aggregat e dat a structure cannot exceed 64K
bytes. Along int is used as a subscript
and the conpiler discards the upper word.
This is an ERROR WARNI NG MESSAG=

96

R ght square bracket] is m ssing.

Syntax error. Correct the error in the
source program

97

|dentifier missing on right of . operator.

Arequired identifier that names a struct
or union nenber is nissing after the
period operator. Correct the syntax error
In the source program

98

Expression nmissing on left of . operator

Arequired expression descri bi n% a struct
or union is nmissing before the period
operator. Correct the syntax error inthe
source program

G 16

C Language Programrer's Cui de C FError Messages

Table GI. (continued)

Error Meani ng

99 Left operand for . operator nust be a struct.

The operand to the left of a period
operator is not a struct or union
Co&rect the semantic error in the source
code.

100 WARNING Non-l ocal structure field assuned.

The struct or union menber used with the
period operator is not defined as being in
the sane structure described by the left
oper and. This is an ERROR WARNI NG
MESSAGE

101 ldentifier mssing on right of -> operator.

Arequired identifier that names a struct
or union nenber is missing after the ->
operator. Correct the syntax error inthe
source program

102 Expression mssing on |eft of -> operator.

A required expression describing a struct
or union is mnmssing before the ->
operator. Correct the syntax error inthe
sour ce program

103 Left operand of -> operator nust be a pointer.

The operand to the left of a -> operator
is not a pointer, Correct the semantic
error in the source program

104 WARNING Non-local structure field assuned.

The struct or union menber used with the

period operator is not defined as being in

the sanme structure described by the left

oper and. This is an ERROR WARNI NG
SSAGE

G17

C Language Programmer's Guide C Error Messages

Table GI|. (continued)

Error Meani ng

105 Division by the constant O.

The conpiler, in an attenpt to optinize
const ant expressions, read an expression
with a zero on the right of a divide
operator. Correct the semantic €rror in
the source program

106 Operand types do not match. Cannot coerce to
conpati bl e types.

Conflicting types for operands in an
expr essi on. The operands cannot be
coerced aut omatical ly toconpatibl e types.
Specify conpatible types for operands.

107 Cannot coerce operand type to double.

The conpiler attenpts to coerce the type
of an expression before perforning an
operation but can not. For exanpl e,
doubl e_var * pointer. Correct the
semantic error in the source program

108 Cannot coerce operand type to |ong.

See error 107. Correct the senmantic error
in the source program

109 Cannot coerce operand type to unsigned.

See error 107. Correct the semantic error
in the source program

110 WARNING Indirection for non-pointers is not
portabl e.

I ntegers can be i ndirected successfully in
Digital Research C(snall nodel on\l/\xg{Nand
PDP-11 C This is an ERROR I NG
message.

G 18

C Language Programer's Gui de C FError Messages

Table G 1. (continued)
Error Meani ng
111 WARNING & operator (address of) used redundantly.

An array is specified w thout a subscript
expression, and the anpersand operator Is
used redundantly, The conpiler ignores
the & The expression is, by definition,
the address of the array. This is an
ERROR WARNI NG MESSAGE.

112

The & operator (address of) requires an |val ue.

The & operator cannot accept the address
of an rvalue expression, Correct the
senmantic error in the source program

113

An lvalue is required with ++ or —oOperator,

The ++ and —operators require an | val ue,
The conpiler did not find one. Correct
the semantic error in the source program

114

Incorrect operand type for ++ or —operator.

You cannot use the ++ and —operators on
arrays or structures, Correct the
semantic error in the source program

115

Data type not specified for expression after sizeof
oper at or.

Wien an expression is not found after the
si zeof operator the conpiler assunes a
type declaration but finds none. Correct
the semantic error in the source program

116

An lvalue is required with ++ or —=0perator,

The ++ and —Operators require an |val ue
but the conpiler cannot find one. Correct
the semantic error in the source program

G 19

C Language Programer's Gui de C Error Messages

Table G 1. (continued)

Error Meani ng

117 Incorrect operand type for ++ or —operator.

The ++ and =meOperators require an oper and
of the appropriate type, Correct t he
semantic error in the source program

118 MESSAGE SPACE RESERVED

119 output file wite error. Disk is probably full.

Wite function returns NULL indicating
that avail abl e disk space for the output
file is exhausted. Conpi lation is
stopped. Use a disk that has nore space.

120 WARNING Not enough registers available for
vari abl es.

You speci fied too many register variabl es
in the program There are not enough
registers to hold all the variables, The
regi ster storage class is automatically
converted to auto. This warning di spl ays
only if you specify the -v3, -v4, or =V5
option swtches.

121 WARNING Additional registers available for
vari abl es.

Addi tional registers are available to hold
register variables that you speci fied in
the program This warning displays only
i f you specify the-v3, =v4, or -V5 option
swi t ches.

End of Appendix C

G 20

Appendix D
Variationsamong Compilers

Digital Research Cis designed to be compatible with the UNI X
Version 7 operating system This appendix presents the major
variations among Digital Research C for the 8086/88, Digital
R;esearchc(‘: for the 68000, and the Kerni ghan and Ritchie description
of UNI X

e Digital Research C for the 8086 does not support the #line
preprocessor conmand.

e The library functions abort() and signal() are availableinthe
68000 version of C but not the 8086.

e The =op formof the standard op= operators is not inplenented
on the 8086 version of C It is inplenmented on the 68000
versi on.

e Kernighan and Ritchie explain in The C Programm ng Language
that you should define a global variable once and only once
wi t hout the ke(}/word extern but that you should specify the
extern keyword for all other references to that global
vari abl e However, Kernighan's and Ritchie' s programing
convention is not conpatible with UNIX or npost other C
conpilers, Instead, UNI X and nost other C conpilers Iet you
define a gl obal variable in as many places as you |ike, with or
wi thout the extern keyword, provided that the definitions are
identical. Digital Research Cfollows this |atter procedure.

e Digital Research Cdoes not support the UNI X function listed in
Section 3.

End of Appendix D

D- |

Appendix E
C Style Guide

To make your C | anguage ﬁ)rograms portabl e, readable, and easy to
maintain, follow the stylistic rules presented in this section.
However, no rul e can predict every situation; use your own judgnent
in applying these principles to unique cases.

E|l Mdularity

Modul ar programs reduce porting and mai ntenance costs. Mdul arize
your programs, SO that all routines that perform a specified
function are grouped in a single mbdule. This practice has two
benefits: first, the maintenance progranmer can treat npst nodul es
as bl ack boxes for nodification purposes; and second, the nature of
data structures is hidden from the rest of the program In a
modul ar program, you can change any maj or data structure by changing
only one nodul e.

E 1.1 Mdule Size

A good maxi mum size for nodules is 500 |ines, Do not make nodul es
bi gger than the size required for a given function.

El.2 Internodul e Conmunication

VWienever possible, nmodul es should communicate through procedure

calls. Avoid global data areas. Were one or nore conpilations
require the sane data structure, use a header file.

El.3 Header Files

In separately conbined files, use header files to define types,
synbolic constants, and data structures the same way for all
modul es. The following |ist gives rules for using header files.

e Use the finclude "file.h" format for header files that are
proj ect-specific. Use #include<file h>for systemw defiles.
Never use device or directory nanes in an include statenent.

e Do not nest include files.
e Do not define variabl es other than gl obal data references in a
Peader file. Never initialize a global variable in a header
ile.
e Wenwiting macrodefinitions, put parentheses around each use
of the parameters to avoid precedence m X-ups.

Eml

C Language Programer's CGuide E 2 Required Coding Conventions

E 2 Required Coding Conventions

To neke your programs portable, you nust adhere strictly to the
conventions presented in this section. OQherw se, the followng
probl ens can occur:

e The length of a Cint varjable varies fromnmachine to machine.
Thi s can cause probl ens with representationand w th binary [/0
that involves int quantities.

e The byte order of nultibyte binary variables differs from
machi ne to machi ne. This can cause problems if a piece of code
views a binary variable as a byte stream

e Nanming conventions and t he maxi numl ength of identifiersdiffer
from machine to machine. Sone conpilers do not distinguish
bet ween uppercase and | ower case characters.

e Sone conpilers sign-extend char and short variables to int
during arithnetic operations; some conpilers do not.

e Sone conpilers viewa hex or octal constant as an unsigned int;
some do not. For example, the follow ng sequence does not
al ways work as expect ed:

LONG dat a;

printf("%dn",(data & xffff));

The printf statement prints the lower 16 bits of the long data
item dat a. However , sone conpilers sign-extend the hex
constant Oxffff to Oxffffffff.

e You nust be careful of evaluation-order dependencies,
particularly in compound BOOLEAN conditions. Failure to use
parent heses correctly can lead to incorrect operation.

E 2.1 Variable and Constant Nanes

Local vari abl e names shoul d be unique in the first eight characters.
d obal variabl e names and procedure nanes shoul d be unique in the
first seven characters. Al variable and procedure nanes should be
conpletely |owercase and should not start wth underscore
characters.

E2

C Language Programrer's Cui de E 2 Required Coding Conventions

Usual Iy, nanmes defined with a #define statement should be entirely
uppercase. The only exceptions are functions defined as nacros,
such as getc and isascii. These nanes nust be unique to 16
characters. You can use #define to get around the seven and eight
character restrictions on gl obal and | ocal nanmes by redefining | ong
names as uni que short nanes.

You shoul d not redefine global names as |ocal variables within a
pr ocedur e.

E 2.2 \Variable Types

PORTAB. H cont ai ns a set of variabl e type decl arati on keywords (Tabl e
B 1) and storage cl ass decl aration keywords (Tabl e E-2) that you can
use to ensure consistent internal representation of data types
across different processors.

Decl aration keywords in PORTAB. H are macro definitions specified
with #define. Using standard type specifiers can be unsafe in
prograns designed to be portable because of variations in internal
representation anong different conpilers. For exanple, an integer
declared with the keyword i nt might be 16-bits | ong on one processor
and 32-bits on a different processor. However, an integer declared
with the macro WORD i s 16-bits on any processor. The standard 1/0O
file STDIQ H al ready i ncl udes PORTAB. H Therefore, if your program
does not include STDIQH, you nust include PORTAB H explicitly to
use the macros shown in Tables 3-1 and 3-2

Table E-|I. Variable Type Macro Definitions
5 Type C Base Type

LONG signed | ong (32 bits)
VORD si gned short 16 bits
UWORD unsi gned short 516 bi ts;
BOOLEAN short (16 bits)
BYTE si gned char (8 bhits)
UBYTE unsi gned char (8 hits)
DEFAULT i nt (16 bits)
VO D voi d (function return)

Table E2 Storage Cass Macro Definitions

Cl ass C Base C ass

REG regi ster variable

LOCAL auto variable

M_OCAL nodul e static variable
GLOBAL gl obal variable definition
EXTERN gl obal variable reference

E3

C Language Programmrer's Qui de E 2 Required Coding Conventions

You shoul d decl are gl obal variables at the beginning of the nodul e.
Define |ocal variables at the beginning of the function in which
they are used. You should always specify the storage class and
type, even though the C | anguage does not require this.

E 2.3 Expressions and Constants

Wite all expressions and constants to be inplenentation-
i ndependent. Al ways use parentheses to avoid anbiguities. For
exanpl e, the construct

if(c = getchar() == '\n")

does not assign the value returned by getchar to c. Instead, the
value returned by getchar is conpared to '\ n', and c receives the
value 0 or 1 (the true/false output of the conparison). The value
that getchar returns is |ost, Putting parentheses around the
assi gnnment sol ves the problem

if((c = getchar()) =='\n")

Wite constants for masking, so that the underlying int size is
irrelevant. In the exanple

LONG dat a;
printf("%d n",(data & OxffffL);

the printf statenent uses a long hex constant for masking. This
solves the problem for all conpilers, Specifying the one's
conpl enent often yields ~Oxff instead of OxffOO.

For portability, character constants nust consist of a single
character. Place nulticharacter constants in string variabl es.

Commas that separate argunents in functions are not operators,
Eval uation order is not guaranteed. For exanple, the follow ng
function call mght performdifferently for different conpilers.

printf("od %\ n",i++,i++);

E 2.4 Pointer Arithnetic

Do not mani pul ate pointers as ints or other arithnetic variables. C
allows the addition or subtraction of an integer to or from a
pointer variable. Do not attenpt | ogical operations, such as AND or
OR, on pointers. A pointer to one type of object can convert to a
pointer to a smaller data type with conplete generality. Converting
a pointer to a larger data type can cause alignment probl ens.

E4

C Language Programer's Qui de E 2 Required Coding Conventions

You can test pointers for equality with other pointer variables and
constants, notably NULL. Arithnetic conparisons, such as >=, do
not work on all conpilers and can generate machi ne-dependent code.

When you evaluate the size of a data structure, remenber that the
conpiler mght |eave holes in a data structure to allow for
alignment. Always use the sizeof operator.

E 2.5 String Constants

Allocate strings so that you can easily convert prograns to foreign
| anguages. The preferred nethod is to use an array of pointers to
constant strings, which is initialized in a separate file. This
way, each string reference then references the proper el enent of the
poi nter array.

Never nodify a specific location in a constant string, as in the
fol l owi ng exanpl e

BYTE string[] = BOCS Error On x:

string[l4] =

Forei gn | anguage equi val ents are not likely to be the sane | ength as
the English version of a nessage.

Never use the high-order bit of an ASCII string for bit flags.
Ext ended character sets make extensive use of the characters above
OX7F.

E 2.6 Initialized and Uninitialized Data

Usual |y, C prograns have three sections: code (program
instructions), initialized data, and uninitialized data. Avoid
modi fyi n% initialized dataif at all possible. Programs that do not
modi fy the data segment can aid the swapping performance and di sk
utilization of a multiuser system

Also, if a programdoes not nodify the data segment, you can pl ace
the programin ROMwi th no conversion. This means that the program
does not nodify initialized static variables. Thisrestrictiondoes
not apply to the nodification of initialized automatic variabl es.

C Language Programmer's Quide E 2 Required Coding Conventions

E 2.7 Recommended Mbdul e Layout

The following list tells you what to include in a nodul e.

e At the beginning of the file, place a corment describing the
the follow ng itens:

the purpose of the nodul e

the major outside entry points to the nodule
any global data areas that the nodul e requires
any machi ne or conpiler dependencies

® Include file statenents.
e Mddul e-specific #define statenents.

e Gobal variable references and definitions, Every variable
shoul d include a comment describing its purpose.

e Procedure definitions. Each procedure definition should
contain the followi ng itens:

A comment paragraph, describing the procedure's function,
i nput parameters, and return paraneters. Descri be any
unusual codi ng techni ques here.

- The procedure header. The procedure return type nust be
explicitly specified. Use VO D when no value returns.

- Argunent definitions. You nust explicitly declare storage
class and variabl e type.

- Local variable definitions. Define all local variables
bef ore any executable code, You nust explicitly declare
storage class and variable type.

- Procedure code.

Refer to Appendix F for a sanple program

E 6

C Language Progranmmer's Cui de E 3 Codi ng Suggestions

E3

Codi ng Suggesti ons

The follow ng suggestions increase program portability and make
programs easier to maintain.

Keep source code within an 80-character margin for easier
screen editing.

Use a standard indention technique, such as the follow ng:

- Begin statenents in a procedure one tab stop (col um ei ght)
fromthe left nargin

- Indent statenents controlled by an if, else, while, do, or
for one tab stop. If you require rrultlple nest ed
i ndentions, use two spaces for each nesting level. Avoid
going nore than five levels deep.

- Place the brackets surroundi ng each conpound statement on a

separate line, aligned with the indentionof the controlling
statenent. For exanpl e,

or (i =0; i <MAXNUM i ++)

j = conput €
|f (j > UPP?ER%

= UPPER;
out put(J)

- Placea null statenent controlled by anif, else, while, for,
or do on a separate line, indented for readablllty

To docunent your code, insert plenty of comments. |f your code
isparticularly abstruse, inserting cooments helpsclarifyit.
Put al | naintenance docunentation in the source code itself.
I f you do not, the documentation will not be updated when the
code changes.

Use blank lines, formfeeds, and white space to inprove
readability.

End of Appendi x E

Appendix F
Sample C Modules

The nodul es in this appendix are witten and documented in C code
that follows the style conventions discussed in Section 3.

Printf Modul e

This nodule is called through the single entry point =printf” to
perform the conversions and output for the library functions:

printf - Formatted print to standard output
fprintf - Formatted print to streamfile
sprintf - Formatted print to string

The calling routines are logically a part of this nodule, but are
conpi | ed seParat ely to save space in the user’'s program when only
one of the library routines is used.

The following routines are present:

_printf Internal printf conversion / output
=prnt8 Cctal conversion routine
_prntx Hex conversion routine

conv Decimal ASCI| to binary routine
_putstr Qutput character to string routine
_prntl Deci mal conversion routine

The following routines are call ed:

strlen Conmpute length of a string
put c Stream out put routine d)
ftoa Fl oating point output conversion routine

This routine depends on the fact that the argument list is always
conposed of LONG data Itens.

D S
% % kR ok ok ok F b ok b F K ok K F R o F % b F kb ok % Ok K K ok kK ¥ ok %
* ok _o ok * % * % * % * o * * *

LKL LKL LLL =L =L L~ K =L~ LKL

hkhkkkkkhkhhhhkhhhhhhhkhkkkkkkkkhkhhkkhkhkkhhkhkhkkhxhkhxhkhkhhhkrkhhkxhkkrk*

~

~
*

E Include files:

#i ncl ude <stdi 0. h>

Listing F-1. _Printf Mbdule

F-1

C Language Progranmmer's Guide

/ *
A Local DEFI NES

tdefine HBIT 31

/*
2 Local static data
*/
M.OCAL BYTE *_ptrbf = 0;
MLOCAL BYTE *_ptrst = 0;
M.OCAL BYTE * fm = 0;
Listing P-1.

F Sanple C Mdule

/* High bit nunber of LONG V\/

Khkkkkhkkhhkhkkhhkkhhkkhhkkhxx;
{

J
/* Buffer Pointer V
/* => File/string (if any) v

/* Format Pointer
/*‘k************‘k‘k***‘k*‘k‘k**‘k**/

(conti nued)

g F F Ok & % ok g * *

* %

* Ok Sk Kk 8

* F * * g

*

C Language Programer's Quide

PRINTF

F Sanple C Mdul e

I NTERNAL ROUTI NE

Routine "_printf" is used to handle all "printf” functions, including

"sprintf", and "fprintf".

Cal i ng Sequence:

=printf(fd,func,fnt,argl);

file or string pointer.
function to handl e output.
address of the format string.
address of the first arg.

Wer e:

fd I's the

func I's the

ft Is the

argl I's the
Ret ur ns:

Nurmber of characters output
Bugs:

It is assuned that args are contiguous starting at "argl ", and that
all are the same size (LONG, except for floating point.

Ak ko kkkkkkhkkkhkkkkkkkkkkk kR kh kA Ak hkh kR hkhhk kA hFk kX Ak khkhhkhhhkkkkh kX x Xk &x %/
/J***************************/

_Drintf(fd,f fnt,al)
LONG fd;

LONG (*f)0;
fmt;

BYTE 4

LONG *al ;

LOCAL BYTE CT

LOCAL BYTE A3

LOCAL BYTE adj ;

LOCAL BYTE buf[30] ;

LOCAL LONG *adx;

LOCAL LONG X;

LOCAL LONG n,

LOCAL LONG m

LOCAL LONG wi dt h;

LOCAL LONG prec;

LOCAL LONG padchar ;

LOCAL DOUBLE 7Z;

LOCAL DOUBLE *dblptr;

LOCAL LONG ccount;

EXTERN —putstr();
Listing F-2

Printf

K 2
/* Function pointer */
/* > Format string V
/* «> Arg list \V/
/****************************I
/* Format character tenp V
/* Qutput string pointer \4
/* Right/left adjust flag */
/* Tenporary buffer V

/k**k************************/

/* Arg Address tenporary V
/* Arg Val ue t enporary

/* String Length Tenp *]
/* Field I__enﬁth Tenporary */
/* Field widt V
/* Precision for "o yf" V
/*'0 or ' ' (padding) \Y4
/* Floating tenporary V
/* Floating tenp. address */
/* Character count V
/* Reference function \V/

/***************************/

| nt er nal

F-3

Rout i ne

i) == 5= 05 Ra)
ad%' =Y
—l N+

el se
ad) E=Er

padchar=(* fnt

width = conv();
RE Sy === n9)

++ fot;
prec = conv()~?
el se

prec = 0O;

S =0
switch(¢ =* fnt++)
case 'D:
case 'd';

=prtl(x);

br eak;

= 0) ?2'0

Listing F-2

*

C Language Programmer's Qui de F Sanple C Mdule
/***************************/
ccount = O; /* Initially no characters */
ptrbf = buf; /* Set buffer pointer x/
adx = al 2 /* Copy address variable */
_Ptrst = fd; /* Copy file descriptor */
m = fnt; /* Copy fornmat address */
i /***************************/
if(*_fnt ='L] *_fm =="'1) /* Skip long output \V/
f ot ++j kS conver si ons W
/% &/
/******************************‘k****************** */
/* This is the main format conversion loop. Load a character fromthe */
/* format string. |If the character is . performthe appropriate
conversion. Otherw se, just output the character. /]
/**********************~k********‘k***************** */
/*
while(¢ = * fm++) /* Pick up next format char*/
| /* *
|f(C !: '%) /***************************/
/~k
(*f)(fd, c); /* 1f not just output */
ccount++ /* Bunp character count T
*k Kk k% *********************/
| se /* It isa*s)
f /* convert g/
X = *adx++? /* X = address of next arg */

/a**************************/

/* Check for left adjust */
/\[**************************/
/* |s left, set flag
/* Bunp format pointer
*

<KL

/* Right adjust
/***************************/
/*

/* Select Pad character 2]

/***************************/

/* Convert width (if any) */
/a**************************/
/* '.' neans precision spec*/
/* *
/* Bunp past '.'
/* Convert precision spec
/‘k

/* None speci f
/************
/~k

/* Assume no output string
/* Next char is conversion
*

/* Deci nal

/~k

/* Call decimal
/* CGo do out put

I**************** SEEEEEEEE

print rtn

LRI

(conti nued)

C Language Programmers Qui de

case 10':

case '0':
_prnt8(x);
break;

case 'X':

CaSeptaXis
_prntx(x);
break;

case 'S':
case 's':
S=X;
br eak;

case 'C:

case 'c':
* _ptrbf++ = x&0377;
break;

case 'E ;
case 'e';
casertFi:
case !'f!:
dbl ptr = adx-1?
zz = *dblptr;
adx =+ 1;
ftoa (zz, buf,
prec = 0;
s = buf;
break;

prec, c);

defaul t:
(*f>(fd,c);
ccount ++;
adx —-

}
;f (s == 0)

*2'pt 1 bf %2210}
= buf;

12

—

strlen (s);

35>
Inon

wi dt h-n;

if (adj rss *r?)
\fvhile (m—> 0)
(*f)(fd, padchar);
ccount ++;

Listing 2.

(prec<n && prec !'= 0) ? prec :

n;

F Sanple C Mdule

/* Cctal */
/* Print */
/* Call octal printer */
/* Go do output x/
)}****************»********* -*f
i/ = #He x */
/* Print]
/* Call conversion routine *
/* Go do output Y

V***************************/
/* String
/* Qut put ?
/* Yes, (easy)
/* Go finish up

<KL

***************************/
/* Character ¥
/ Out put ? */
/* Just load buffer V
/* Go output V
***************************j
/* Floating point? V
/& V
/* V
/* */
/* Assumes 64 bit float! =/
/* Load val ue V

*
~

/* Eu”) past second word.
/* Call floating conversion*/
/* Fake out padding routine*/

/* just like string print */
/* Go CQutput =/
/***************************y
/* None of the above? V
/* Just Output \A
/* Count it. V
/* Fix arg address

/* End switch */

>k ko k ok ok ok K KK K KKKk Kk Kk Kk kk kKK [

/* If s =0, string is in */
7 EFsab Ut =
! I nsure termnation]
I Load address */

/***************************/
/* x/
/* Compute converted |ength*/
/* Take mn(prec,n) V
/* mis # of pad characters*/

JREX KKK G kKK Kk kK kKA Kk ok ok kk kS

/* For right adjust, V
/* Pad in front V
/*

/* Count it V
e V

/***************************[

(conti nued)

C Language Progranmer's Quide

¥\hile (n—-
(*f)(fd,*S++)§
ccount ++;

while (M—> 0)

(*f)(fd, padchar);
ccount ++7

ptrbf = buf;

r

if((*f) s _putstr
«)(*f)Ffd,log);

return(ccount);

Listing F-2.

F Sanple C Mdul e

/* Qutput Converted =/
T V
/* Data */
/* Count it =
/*

LA EEEEEEEEEEEEEEERE R LY

/* 1f left adjust,
7B B
/* Pad V
/* Count padded characters */

/***************************/

/* Reset buffer pointer \Y4

/* End el se i
/* End while */
/* |f string output, */

/* Drop in termnator char */
/***************************/
/* Return appropriate val ue*/
/* End _printf

/***************************/

(conti nued)

C Language Programrers Cuide F Sanple C Mdule

/a**‘k*‘k‘k***************k*k*****k*k"k*k*k*k*k***************J(**************************/
/i3 V
[& “PHRENETES PROCEDURE */
e e o e e Vs
/
[& Routine "_prnt8" converts a binary LONG value to octal ascii. V
T The area at "_ptrof" is used. V
/*
/2 Cal ling Sequence: */
/* */
& _prnt8«n)» v
/*
e "n" is the nunber to be converted. V
/* */
T4 Ret ur ns: \V/
/% V
/: (none) *\//
/
t--btﬂéﬁltvt&tt-ii!ltit'iwtttiit'iilk*ll—tkiiliiitiit&ivl'iitltibi.ttk"tﬁiii_'

VO D _prnt8 (n) /% Jj
{ LONG n; /* Number to convert \\;
/‘k
REG WORD P? /* Counts bits i~
REG WORD k2 /* Tenporary 3-hbit value B/
REG WORD SW, /* Switch 1 => output
/****k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘kk*'k*******/
{'f (n==0) /* Handl e 0 as special case :;
/*
* ptrbf++ = "0 ; /* Put in one zero V
return? i/ & And quit)
} /* *
/"[‘k‘k‘k‘k*******‘k***************/
sw = 09 /* Indicate no output yet &
/& ; : V
for (p=HIBIT? p >=0; p = 3) ;: Use 3 bhits at a time \\;
{'f ((k = (n>>p)&0x7) || sw) 5*: Need to output yet? *\//
if (p==HIBIT) /* 1st digit has only 2 bits*/
k = k & 027 /* Mask appropriately \Y4
_ptrbf++ = '0' + ko / ASCIIfy digit */
sw = 19 /* Set output flag 7
} /* End if it/
} /* End _prnt8 VvV
/kk ok ok ok kokok

KEE XK KKK KKKk ko kkk ok k f

Listing F-3. _Prnt8 Procedure

F-7

C Language Progranmer's Qui de

*
- :
/& Prntx Function \
* e T .
v o
/% The "_prntx" function converts a binary LONG quantity to hex ASCll \/
& and stores the result in "*_ptrbf". Leading zeros are suppressed. :;
/*
% Cal ling sequence: V ~
/*
/* _pratx(n); V
/i £/
;* where "n" is the value to be converted. v
*
/: Ret ur ns: \\;
/
/5 (none) */
/i */
VO D _prntx (n) /=] V
LONG n? /* 32 bits */
{ /a***************************/
REG LONG d; /[* Adigit /
REG LONG a; /* Tenporary val ue
A***************************/
if (a= n>>4) /* Peel off low 4 bits \Y4
pratx (a & OxOfffffffO); /* If < 0, print first */
d = n&Oxf; /* Take low four bits =/
* _ptrbf++ = d > 9?2 'A+d-10: '0 + d;/* ASCIIfy into buffer
} /A***************************/
Listing FF4 _Prntx Function

F-8

F Sanple C Mdule

kkkkkkkkkkhkkkkkkk khhhhhhkhkkkhhhkhhhkhhhhhhhhhhkhhhhhrhhk grrrrrrrrhkrrrxxx/

C Language Programmer's Quide F Sanple C Mdul e

/‘k***********k**************k*k******************‘k‘k‘k‘k‘k*‘k*‘k***‘k‘k‘k***************

~

1% Vv
Conv Function V
[* ersemmsessssssesees————-———— \V/
/& : - ! ; VvV
[T Function " _conv" is used to convert a decimal ASCI| string in V
/* the format to binary. \V
/* ¥/
/* Cal ling Sequence: V
1+ \Y/
[* val « conv(); \YA
! 5 V
T Ret ur ns: V
! % ¥y
/% "val" is the converted val ue V
/ % Zero is returned if no value *\//
*

;,..A**/

<

LONG conv() B

Thkkkkhhhhhkhrhhkkkkkkhhkrhx

*
~

REG BYTE c; /* Character tenporary
REG LONG n; /* Accunul at or

/***************************

<<

n = 0; /* Zero found so far \Y/
while(((c=*_ fnt++) >='0) /* Wiilec is adigit V
§& (C <= '9')) /& */

n = n*10+c-' 0" ; /* Add c to accunul ator =/

e /* Back up format pointer to*/

/* character skipped above */
retul’n(n)’ /****************************/

Listing F-5 _ Conv Function

F-9

C Language Programmer's Gui de F Sanple C Mdule

A*+**/

[% : V
% __iPilpet SISER it Functi on &/
[eeessesscsesssss s e -———— \Y4
a */
/* Function "_putstr" is used by "sprintf" as the output function \V4
/* argunent to "_printf". A single character is copied to the buffer \/
/& at “_ptrst". *f
/* */
/i Cal l'ing Sequence: V
/* V
1 & —putstr(str,chr); \YA
/* \/
/& where Mstr" is a dunmy argunent necessary because the other output V
;: functions have two argunents. v
1% Ret ur ns:)
/% x/
/5 (none) 3]
5***:f
VO D _putstr%str,chr) /& /]

REG BYTE chr; /* The out put character V

BYTE *str; /* Dunmmy ar gunent V
1 /****************************/

_ptrst++ = chr; / CQut But the character */

return(0); /* Go back V
1 /************************‘k***/

Listing F-6. _Putstr Function

F-10

C Language Programrer's Cuide

F Sanple C Mdul e

/A~k~k*************k*k**k*k**k***k********k*k'k*k***********************‘k‘k*‘k*******k*****/
I% V
/* Prtl1l Functi on v
/* s SR s e i e i S s o

/K V
/ & Function "_prtl" converts a LONG binary quantity to decimal ASClI &y
& at the buffer pointed to by "_.ptrbf". *\//
/*

1 Cal I i ng Sequence: x/
& *\//
/% —prti{n);

/* P55E Vv
;* where "n" is the value to be converted. *;
* *
/ % Ret ur ns: V
] & */
/* (none) \Y4
/* */
VGD_prtI(n% e V
REG BYTE n; /* Conver si on infut */

/*************** kkkkkkkkkkk %/
REG LONG di gs[10] ; /* store digits here V
REG LONG *dpt; /* Points to last digit V
/**********-******************j
dpt = digs; /* Initialize digit pointer */
/****************************I
if (n<0) /* Fix V
% up
/% sign */
[*_ptrbf++ = o= -n;} *
/****************************/
for (; n1=0; n = r/10) /* Divide by 10 till zero */
dpt ++ = nodo; / Store digit (reverse ord)*/
/****************************/
if (dpt == digs) /* Zero val ue? o \Y4
dpt++ = 0; / Yes, store 1 zero digit */
/****************************/
while (dpt != digs) ;: Now convert to ASClI V
' —apt ; /* Decrenment pointer
*_ptrbf++ = "0 + *dpt; /* Note digits are negativel*/

Listing F-7. _Prtl

End of Appendi

F-11

/*

/****************************/

Function

X F

#define, 2-3, 3-3, &3
#include, 1-2, EI
_START, 2-15

A

abort function, D-I
abs function, 3-5
access function, 3-6
all ocation directi ves RASM 86,
5-7
argunent passing, 7-3
overl ays, 7-4
arithmetic conparison,
ASCll, 1-2
character macros, A2
characters, 3-15
digit string, 3-7
files, 3-2, 3-23, 3-37, 4-1
ASM 86, 5-1
assenbler, 5-1
assenbly | anguage, 5-1
cross-reference utility

E5

program 1-1
assenbly routine, 2-12, 5.1,
5.5, b-
calling, 5-2
external , 5-3
public, 5-2
atan function, 3-60
atof function, 3-7
atoi function, 3-7
atol function, 3-7

auto variable macro, 3-3
B

backward reference, 7-5
bi g nodel
conpil ation, 2-6
enable, 2-3
library, 1.2, 3-1, A-l
bi nary
data, 3-59
files, 3-2, 3-23, 3-37,
4-1
bit flags, &5
bool ean nmacro, 3-3
BP register, 5-5

Index

brk function, 3-8
BSS, E5
buffering, 4-1, 4«2
C
calling

a C nodul e, 5-3

an assenbly routine, 5-2
calloc function, 3-9

carriage return, 3-15, 3-26,
3-17

chai ni ng,
char, 5-6
keyword, 6-1
charact er
al phanuneri c,
control, 3-15
conversion, 3-61
datatyF& 6=1
printable, 3-15
punctuation, 3-15
space, 3=15
storage, 6-1
chnmod function
chown function, 3-11
clearerr function, 3-22
CLEARL. L86, 1-2, 3-1, A-|
CLEARS L86, 1-2, 31, A-|
close function, 3-12
CoBJ. TMP, 2-1
code area, 2-14
code generator, 1-2, 1-3
| ocation, 2-4, 2-12
nodes, 2-3, 2-9
code optim zer, 2-9
di sable, 2-3
command file,
command |ine
conpiler, 1-5, 2.2
length of, 2-2
overl ays, 7-4
conmas, E4
comments, E-6
COVIVON
conbi ne type RASM 86, 5-7
data segnents, 5-8

3-15

3-11

1-7, 2-22

| ndex=1

conmon
attribute, 5-6
segnent, DI
conpatibility with UNI X V7,
3-1

conpiler, 1-2, 1-5, 2-20
code generator, 1-2, 1-3
command line, 1-5, 2-2, 2-3,

2-21
1-5,

B
default filetype,
di fferent versions,
1-7, 2-22, D
end of conpilation, 1-5
error nessages, 1-3
full configuration, 2-1
i nfornmati on nessage displ ay
| evel, 2-3
i nformati on nmessages, 2-3
listing/disassenbly file
nerge utility, 2-13
menory all ocation nessage,
2-14, 2-21
m ni mum configuration, 1-3
operation, 2-1

options, 2-2

parser, 1-2, 1-3
preprocessor, 1-2, 1-3

si gn-on banner, 1-5, 2-21

stoppi ng, 2-2
supervi sory nodul e, 1-2
suppress sign-on nessage,

wor k di sk, 2-20
conpl eti on code, 3-18
conmponents, 1-1
Ccoxn, 2-8, 2-10, 4-3
consol e device, 2-8, 2-10,

3-62, 4-3
const ant nanes, E 2
constants, B4
control characters,
control-Z, 3-26, 4-1
conver si on

functions, 3-7

precision, 6-4
conver si on character

3-15

% 3-41, 3-42, 3-51
c, 3-42, 3-51

d, 3-42, 3-51

e, 3-42, 3-51

f, 3-42, 3-51

91 3' 42

o, 3-42, 3-51

s, 3-42, 3-51
u, 3-41, 3-42
X, 3-42, 3-51
[, 3-51

conversi on specification
printf function, 3-40, 3-41
scanf function, 3-49
cos function, 3-13
cP M86, 1-1, 2-15, 3-1, 3-2
CPU, 1-1
creat function,
creata function, 3-14, 4-1
creatb function, 3-14, 4-1
cross-reference utility
assenbly | anguage, 1-1
CTEMP. TOK, 2-1, 2-3, 2-9,
2-12, 2-16
ctype functions, 3-15
CTYPE H, 1-2, 3-61

D

dash, 2-2
data
buffering, 4-1
control structure,
group, 5-8
segnent, 5-6
structures, EI
types, 6-1
def aul t
buffer, 7-5
filetype conmpiler, 2-21
nunber of code generat or
nodes, 2-9
object file name, 1-6, 2-5
default drive
conpiler, 2-1
overl ays, 7-4
system |ibrary, 2-22
define, 2-3, 2-6
dgroup, 5-8
DI register, 5-4
directory systemlibrary
functions, 3-4

3-14, 4-1

4-2

doubl e, 5-3, 5-6

doubl e- preci si on
floating-point, 6-3
data type, 6-1
storage, 6=3

| ndex- 2

downward reference, 7-5
DRC C\VD, 1-2, 1-3, 2-1
DRC ERR, 1-2, 2-1, 2-14
DRC860. CMD, 1-2, 1-3, 2-1,
2-4, 2-9, 212, 2-16
| ocation, 2-4, 2-13
DRC861. C\MD, 1-2, 1-3, 2-1, 2-4
| ocation, 2-4, 2-13
DRC862. CMD, 1-2, 1-3, 2-1,
2-4, 2-10, 2-13
| ocation, 2-4, 2-13
DRCRPP. CMD, 1-2, 2-9, 2-16

E

E2BI G, 3-38
EACCES, 3-38
EBADF, 3-38
EFBI G, 3-39
El NVAL, 3-38
EIO, 3-38
end of conpilation, 1-5
end-of -file, 3-22, 4-1
byte level, 4-1
ENFI LE, 3-38
ENODSPC, 3- 39
ENCENT, 3-38
ENOMEN, 3-38
ENOSPC, 3= 39
ENOTTY, 3-38
entry points, 3-2, 7-5
entry/exit protocol, 5-4
ENVAL, 3-38
ERCFS, 3-39
errno external variable, 3-38
ERRNQ H, 1-2
error
di splay level, 2-4, 2-11
nessage file, 1-2, 1-3
nessage text, 2-14
messages, 1-3, 1-7, 2-4,
-13, 2-14, G|
nunber, 1-3, 2-14, G|
operating system 3-38
reports, 2-13, G|
war ni ng nessages 2-4,
2-13, 2-14, G
execl function, 3-17
execut abl e
conponents, 1-1
program 1-3, 1-7,
2-15, 2-22
exit and _exit functions, 3-18

exp function, 3-19
exponent, 6-3
expressions, E4
extern
data, 2-13
epr|C|t 2-13
implicit, 2-13

keyword, 5-2, 5-6, D-L
ext erna

area, 2-13

data access,

decl arati ons,

nanes, 5-1

significant characters, 5-1
EXTRN directive RASM- 86, 5-3

F

5-6
5.2

fabs function, 3-20
FAR RASM 86, 5-3

faster conpilation, 2-3, 2-8,
2-8
fclose function, 3-21
fdopen function, 3-23
feof function, 3-22
ferror function, 3-22
fflush function, 3-21
fgetc function, 3-27
fgets function, 3-31
file access
regular, 4-1
stream, 4-2
file descriptor, 3-22, 3-33,

i | ename tenporary, 3-36
ileno function, 3-22
files, 4-1
access, 4-1
ASCl 1, 4-1
4.1

bi nary,

close, 3-12, 3-21
create, 3-14, 4-1
del ete, 3-64
open, 3-23, 4-1
owner ID, 3-11
protection node,
standard 1/0O, 4-3
| etype

.C, 1-5, 2-21
.C\D, 1-7, 2-16, 2-23
.BJ, 1-7, 2-22

OVR, 7-4

float, 5-3, 5-6

—h —h

3-11
f

| ndex=3

floating-point, 6-1, 6-3
arithnetic, 2-7, 6-3
functions, A3

fopen function, 3-23

for=loop, 1-5

formfeed, 3-15

format string, 3-40
scanf function, 3-49

formatting output, 3-40

forward reference, 7-5

fprintf function, 3-40

fputc function, 3-43

fputs function, 3-45

fread function, 3-25

free function, 3-9

freopen function, 3-23

fscanf function, 3-49

fseek function, 3-26

ftell function, 3-26

function
character classification,

3-15

directory, 3-4

error, 3-22

external, 5-7

names, 3-4

reference, 3-2

return val ues, 3-2, 3-6

systemlibrary, 3-4
fwite function, 3-25

G

getc function, 3-27
getchar function, 3-27
getl function, 3-27
get pass function, 3-29
getpid function, 3-30
gets function, 3-31
getw function, 3-27
gl obal
data areas, El
variable macro, 3-3
GROUP directive RASM 86, 5-8

H

har dware stack, 5-3
header file, E-I
heap
extension, 3-8
managenment, 3-9

nclude file, 1.2, 2.3, 2-17,
3-3, 3-38

nesting, Bl

ndex function, 3-32

ndi rection operator, 2-14

nitialized data, E5

nput file LINK-86, 2-22

NPUT option LI NK-86, 2-5,
2- 22

nput/out put, 2-16, 4-1

nt, 5-6

keyword, 6-2

nt eger

data type, 6-1

| ong, 6-2

short, 6-2

storage, 6-2

unsi gned, 6-2

Inte
8087, 2-3
ASM- 86, 5-1

object file format, 2-1

nterlist

di splay, 1-3, 2-10

generate, 2-3, 2-10

option, 1-3, 2-10

nt er nodul e conmuni cation, E-l

nternal data representation
6-1

sal num function, 3-15

sal pha function, 3-15

sascii function, 3-15

satty function, 3-33

scntrl function, 3-15

sdigit function, 3-15

i sl ower function, 3-15

isprint function, 3-15

i spunct function, 3-15

i sspace function, 3-15

i supper function, 3-15

J
junp optinizer disable, 2-3,
2-8

junp routine nonlocal, 1-2,

3-53
K
Ker ni ghan, D-|

| ndex-4

L

1-1, 3-1

library,
3-1

subrouti nes,

utility, 1-2
line nunber, 2-14
line-feed, 3-15, 4-1
LI NK-86, 2-4, 2-16

automatic invocation, 2-3,
2-5

input file, 2-5

I NPUT option, 2-5

| ocation, 2-4, 2-13

MAP option, 2-16

nenory al | ocati on nmessage,
SEARCH option, 2-5, 2-16,
2-23

si gn-on banner, 2-22

si gn-on nmessage, 1-7
LI NK86. CMD | ocati on, 2-13
li nkage editor, 1-2
list

device, 2-11, 4-3

generate, 2-3, 2-8
l'isting/disassenbly file-nerge

utility, 1.2, 1-3, 2-4,
2- 10
literal character strings,
2-13
| ocal
buffering, 4-2
variable, 57, E6
log function, 3-34

| ogl O function, 3-34
long, 5-3, 5-6
divide, 2-15
i nt eger storage,
keyword, 6-2
shift, 2-15
| ongj unp function, 3-53
|ow-level I/O 4-1
| ower case
conpiler, 3-4
C programs, 5-1
function nanmes, 3-4
| seek function, 3-35
LST:, 2-8, 2-10, 4-3

6- 2

M

machi ne support subroutines,
2-15
macro, 2-16
abs functi on,
BOOLEAN, 3-3
BYTE, 3-3
ctype functions, 3-16
DEFAULT, 3-3
definition, 1-2, 4-3, E2
EXTERN, 3-3
3- 27
2-16

3-5

getc function,
GLOBAL, 3-3

I nstructions,
LOCAL, 3-3
LONG, 3-3
MLOCAL, 3-3
putc function,
REG, 3-3
toascii

3-43

3-61
3-61
3-61

function,
tol ower function,
t oupper function,
UBYTE, 3-3
ULONG, 3-3
UNORD, 3-3
va D, 3-3
WORD, 3-3
mal | oc function,
manti ssa, 6-3
MAP option LINK-86, 2-15
maski ng, E4
mat h coprocessor, 2-3
menory
al l ocati on nessage,
conpiler, 2-13, 2-20
LI NK-86, 2-22
managerent functions, 3-9,
A3
nodel s, 1-2
requirenents, 1-1
menu-driven prograns, 7-1
message di splay | evel
conmpiler, 2-11
m cr opr ocessor
68000, 3-59, DI
8086/ 8088, 1-1, 3-59
8087, 2-3, 2-7
m ni num
C system 1-4

3-9

1-5, 1-7

confi 1gurat ion compiler, 1-3
mkt enp function, 3-36
modul ar prograns, E |

nodul e, EI

| ndex=5

N

names
constant, B2
variable, E2
NEAR RASM- 86, 5-3
nested overlays, 7-2
nodes code generator, 2-9
nonl ocal3 junp routine, 1-2,

@)

obj ect
program 2-22
record, 2-5, 2.22
object file
default nane, 1-6
format, 2-1
speci fy nane for, 1-6, 2-3,
2-9, 2-21, 2-23
open function, 3-37, 4-1
opena function, 3-37, 4-1
openb function, 3-37, 4-1
oper at or
AND, E4
op=, D-I
oR, E4
sizeof, E5
option letter, 2-2
option switch, 2-2, B-l
=0, 2-4, 2-12
2-4, 2-12
2-4, 2-13
2-4, 2-13
2-3, 2-5, 2-13
2-3, 2-6
2-3, 2-6
2-3, 2-7
2-3, 2-7
2-3, 2-8
2-3, 2-8
1, 2-3, 2-8
-n, 2-3, 2-8
-0, 2-3, 2-9, 2-20, 2-23
-p, 2-3, 2-9, 2-16
-q, 2-3, 2-9
-r, 2-3, 2-10, 2-13
-yf 2=3, 2-10, 2-20
=W, 2-4, 2-11, 2-14
X, 2-4, 2-11
«Z, 2.4, 2-12
out put formatting, 3-40
out put/input, 4-1

| TINNY |
Dl

—— oo oo W

overlay, 7-1, 7-5
entry point, 7-4
manager, 7-5
nesting, 7-5

OVR file, 7-4

P

par aneters

external, 5-7

remove from stack, 5-5
parser, 1-2, 1-3

 ocation, 2-4, 2-12
passing argunments, 7-3
password, 3-29
percent sign

printf function, 3-41

scanf function, 3-50
peripheral device, 4-1, 4-3
perror function, 1-2, 3-38
poi nt er

arithmetic, B4

scanf function, 3-49

stream 4-2

to static location, 5-5
PORTAB H, 1-2,3-3, 4-3
portability, 1-2, 3-1, 3-2,

4-3, 5-1, El, B2, B4,
E7

macros, 3-3
preci sion conversi on, 6-4
preprocessor, 1-2, 1-3, 2-13

execute al one, 2-3, 2-9,

2-16
| ocation, 2-4
printer, 4-3

printf function, 1-5, 3-40
probl ens, 1-7
procedure definitions, &6
process ID, 3-30
program
area, 1-1
listing, 2-3, 2-8
Programmer's Utilities CQuide,
1-7, 2-5, 2.16, 2-23, 5-1,
5-3, 5-7, 5-8
progranmng style, E-l
PUBLI C directive RASM 86,
5-2, 5-7
public C nodule, 5-3
putc function, 3-43
putchar function, 3-43
putl function, 3-43
puts function, 3-45
putw function, 3-43

| ndex-6

Q

gsort function, 3-46
R

R C\VD, 1-2, 1-3
rand function, 3-47
random nunber generator, 3-47
RASM-86, 5-1, 5-2, 5-7
all ocation directives, 57
COVMMON conbi ne type, 5-7
EXTRN directive, 5«3
FAR | abel, 5-3
GROUP directive, 5-8
NEAR | abel , 5-3
PUBLI C directive, 5-2, 5-7
upper case, 5-1
read function, 3-48
READ ME, 1-2
reall oc function, 3-9
redirection, 2-16, 4.3
I/O 4-3
register variable macro, 3-3
register
BP, 5-5
D, 54
restore, 212
S, 5-4
SP, 5-5
regular file, 4-1
access, 4-1
cl ose, 3-12
functions, 4-2, A2
of fset position, 3-35
open, 3-37
output to, 3-65
read from 3-48
rel ocat abl e
assenbler, 1-2, 1-5
object file, 1-6, 51
obj ect program 2-22
reserved letters, 2-2
restore registers, 2-4, 2-12
return val ues, 5-6
reverse
assenbly, 2-3
preprocessor, 1-2,
29, 2-16
rewi nd function, 3-26
ri ndex function, 3-32
Ritchie, DI
root nodule, 7-4, 7-5
run-time requirements, 1-1

S

sanple C
nodul e, F-I
progranms, 1-2
SAMPLE. C, 1-2, 1-4, 1-5, 1-6
SAMPLE CVD, 1-7
SAMPLE OBJ, 1-6
sbrk function, 3-8
scanf function, 3-49
screen editing, E7
SEARCH option LINK-86, 2-5,

2-16, 2-22
segnment, 5-7
name, 5-6

registers, 2-15
set buf function, 3-52
setjunmp function, 3-53
SETJUVP. H, 1-2

short, 5-6
i nteger storage, 6-2
keyword, 6-2

S| register, 5-4
side effects arguments, 3.5,
3-16, 3-43, 3-61
si gn-on banner
conpiler, 1.5, 2-21
LI NK-86, 2-22
si gn-on nessage
LI NK-86, 1-7
suppress for conpiler, 2-3
signal function, DI
significant characters, 51
sin function, 3-13
single-byte 1/0, 4-2
si ngl e- preci sion
floating-point, 6-3
data type, 6-1
storage, 6-3
si zeof operator, E5
smal | nodel
conpilation, 1-6, 2-23
library, 1-2, 1-6, 2-5, 3-1,
Al

Sof t war e Performance Report,
2= 24
sorting routine, 3-46
source
file, 2=15
program 1-5, 2-1
SP register, 5-5
space, 3-15
array allocation, 3-9
option swtches, 2-2

| ndex=7

sprintf function, 3-40
sqrt function, 3-54
srand function, 3-47
sscanf function, 3-49
stack, 5-3, 5-4, 5-5

initialize pointer, 2-15,
stand- al one progranms, 2-15
st andard

error file, 4-3

files, 4-3

input file, 4-3
/0 3-3, 4-1, 4-3
i nput read, 3-49

output file, 4-3
start-up routine, 1-2, 2-15
STARTUP. A86, 1-2, 2-15
static
data, 5-5
vari abl es,
stderr, 4-3
stdin, 4-3
STDIQH, 1-2, 3-3, 3.5, 4.3
stdout, 4-3
storage cl ass
decl arati ons,
definitions,
strcat function,
strcnp function,
strcpy function,
streamfile, 4-1
access, 4-2
cl ose, 3-21
control structure,
functions, 4-2, A2
i nput from 3-27
open, 3-23
output to, 3-40, 3-43, 3-45
poi nter, 4-2
r ead fron1 3-25, 3-31, 3-49
read/ wite p0|nter 3- 26
wite to, 3-25
string variables, B4
string
comparison, 3-56
constant, 5-5, E5
concatenate, 3-55
copy, 3-57
functions, A2
I ength, 3-58
vari ables, E4
strlen function,
strncat function,
strncnp function,
strncpy function,

E-5

3-2, 3-3
E3

3-55

3- 56
3-57

3-23, 4-2

3- 58
3-55
3- 56
3-57

subroutine libraries, 1-2
supervi sory nodule, 1-2
swab function, 3-59
synmbol table save space, 2-3,
2.
synbolic
constants, E-I
names, 3-38
syntax errors,
system cal
CP/ M 86, 3-38
UNI X, 3-1
systgf}library, 1-1, 1-2, 3-1,

2-13

big nodel, 1-2
functions, 3-4

smal | nodel, 1-2, 1-6
underscore, 3-2, 5-1, A-l

system requirenments, 1-1
T
tab, 3-15
tan function, 3-60
Techni cal Support, 2-24
tell function, 3-35
t enporary

destination, 2-4, 2-12

fil ename, 3-36

files, 1-1, 2-1, 2-12, 2-16
space, 1-1, 2-1
terminal, 3-62, 4-3

test prograns, 1-2
TEST. C, 1-2, 2-20
TESTBI G CMD, 2-22, 2-23
toascii function, 3-61
tol ower function, 3-61
toupper function, 3-61
troubl e-shooting, 1-7, 2.23
ttynane function, 3-62
two' s conpl ement, 6-2
type definitions, E3
typedef, E-3

U

5-1, Al
3-2, 5-1

under scor e
system library,
ungetc function, 3-63
uninitialized data, BE5
UNI X, 4-3, D-|
C functions, 3-1, 3-2
systemcalls, 3-1
V7 compatibility, 3-1, 3-38
unlink function, 3-64

| ndex-8

unsi gned keyword, 6=2

uppercase, 5-1
conpiler, 3-4

upward reference, 7-5

\%

variable, El
names, E2
type decl arations, 3-3
types, B3

W

warni ng nessages, 213, 2-14,
white space characters, 3«15
word boundary, 3-9

work di sk create, 2«20

wite function, 3-65

X

XREF-86, 1-1

Z

zer o padding, 6-4

| ndex=9

NOTES

NOTES

NOTES

Thi s page added for scan notes.

-scanned @150dpi 6.62in wby 8.5in h

in color, original docunent.

-om tted bl ank pages.

-omtted DRI reprint of 'The C Program
m ng Language' by KER, which is the
first half of the original docunmentation
but a separate nmanual.

-since DRI Cfollows this version, it is
pre-ansi C

-each page scanned into a separate JPEG
files, 188 total, front cover to rear.

This effort is in a nenorial to:
Ti m A nst ead WB5PFJ

'Faith i s the substance of things hoped
for.'

Reader Comment Card

We welcome your comments and suggestions. They help us provideyou with better
product documentation.

Date

1. What sections of this manual are especially helpful ?

2. What suggestions do you have for improving this manual ? What information
is missing or incomplete? Where are examples needed?

3. Did you find errorsin this manual ? (Specify section and page number.)

C Language Programmer’s Guide

for the CP/ M-86® Family of Operating Systems
2nd Edition Oct. 1983

3049-2023-002

COMMENTS AND SUGGESTIONS BECOME THE PROPERTY OF DIGITAL RESEARCH.

\Y%

From:
NO POSTAGE
i NECESSARY

IF MAILED IN THE

|

' BUSINESS REPLY MAIL

| FIRST CLASS / PERMITNO.182 / PACIFICGROVE, CA

POSTAGE WILL BE PAID BY ADDRESSEE

M DIGITAL RESEARCH

Attn: Publications Production

P.O. BOX 579
PACIFIC GROVE, CA 93950-9987

c
=
—
m
)
wn
-
>
5
m
wn

IlIIlIIII|II|I|I|I|IIIIIIII|I|II|I|I||II|IIIII|IIIIII

