
DIGITAL
RESEARCH

C
Language

Programmer s Guide
for the / -86®

Family of Operating Systems

I

c
Language

Programmer’s Guide
for the

CP/M-86® Family
of Operating Systems

Copyright © 1983

Digital Research
P.0. Box 579

160 Central Avenue
Pacific Grove, CA 93950

TWX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyright © 1983 by Digital Research Inc.
rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual, or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.
Readers are granted permission to include the
example programs, either in whole or in part, in
their own programs.

All

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular

Further, Digital Research reserves thepurpose.
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M and CP/M-86 are registered trademarks of
Digital Research. Digital Research C, ASM-86, LIB-
86, LINK-86, TEX, and XREF-86 are trademarks of
Digital Research. UNIX is a registered trademark of
Bell Laboratories. Intel is a registered trademark
of Intel Corporation.
Digital Equipment Corporation.

PDP-11 is a trademark of

The C Language Programmer's Guide for the CP/M-86
Family of Operating Systems was prepared using the
Digital Research TEX Text Formatter and printed in
the United States of America.

* Second Edition: October 1983 *

Foreword

Digital Research C is a full-function implementation of the
standard C programming language. This implementation runs under the
CP/M-86® operating system based on the Intel® 8086/8088 family of
microprocessors. Unlike many other C language implementations,
Digital Research C enables you to write programs that are completely
portable between CP/M® and the UNIX® operating system.

The Digital Research C system consists of two executable components:
the C compiler and the reverse preprocessor. The system subroutine
libraries support two 8086/8088 program memory models: small and
big. System libraries are compatible with UNIX Version 7. Compiler
options accommodate direct control over many aspects of the
compilation process and provide programmer access to useful compiler
generated listings and interlistings. An extensive error warning
and reporting system expedites program development with explicit
diagnostic messages. Programmer's utilities for use with the
Digital Research C system include the LINK-86 linkage editor, the
LIB-86 library utility, the XREF-86 assembly language cross-
reference utility program, and the RASM-86 relocatable assembler.
Three documents supply the necessary information for using the C
language, C system software, and the programmer's utilities.

•Digital Research. C Language Programmer's Guide for the CP/M-
86 Family of Operating Systems. Pacific Grove, California:
Digital Research, 1983 (cited as Programmer's Guide).

• Digital Research. Programmer's Utilities Guide for the CP/M-86
Family of Operating Systems. Pacific Grove, California:
Digital Research, 1983 (cited as Programmer's Utilities
Guide).

• Kernighan, Brian W., and Dennis M. Ritchie. The C Programming
Language. Englewood Cliffs, New Jersey: Prentice-Hall, 1978.

The Programmer's Guide consists of seven sections and six
appendixes. The manual provides all the information you need to
operate the C system software.

• Section 1 defines the computer resources you need to use
Digital Research C and the individual components that make up
the C software system. A simple demonstration program helps
you get your C system up and running.

•Section 2 explains how to use the C compiler.
demonstration program provides a more detailed description of
the compiling, linking, and running procedure.

A second

iii

•Section 3 describes each function in the C system library. A
directory at the beginning of the section helps you locate
specific function descriptions easily.

•Section 4 explains the use of files and other input/output
conventions.

•Section 5 explains how to interface assembly routines with C
modules.

•Section 6 describes internal data representations.

•Section 7 explains the use of overlays.

Appendixes include a listing of error messages, summaries of system
library functions and compiler options, a useful programming style
guide, and some sample C source code modules.
This programmer's guide does not attempt to describe features of the
C language. The Kernighan and Ritchie manual provides both an
excellent C language reference section for the experienced
programmer and a tutorial introduction to help the novice programmer
get started in C. The Programmer's Utilities Guide presents in-
depth explanations of the Digital Research linkage editor, library
utility, and relocatable assembler. Together, the three manuals
provide all the information you need to use Digital Research C to
its fullest potential.
Digital Research is interested in your comments on programs and
documentation. Please use the Software Performance Reports and the
Reader Comment Card enclosed in each product package to help us
provide you with better software products.

iv

Table of Contents 0

1 Getting Started with C

1-1System Requirements1.1

1-1Run-time Requirements1.2

1-11.3 C Components

1-3Minimum Configuration1.4
I1-4A Simple Demonstration1.5

2 Operating C

2-1Compiler Operation2.1

2-22.1.1 Compiler Command Lines . . .
2.1.2 Stopping the Compiler . . .
2.1.3 Compiler Command Line Options
2.1.4 Memory Allocation Data . . .
2.1.5 Error Messages

2-2
2-2

2-13
2-13
2-15Start-up Routines and Stand-alone Programs . .

Reverse Preprocessor Operation

2.2

2-162.3

2-17Memory Models2.4

2-18
2-19

2.4.1 Small Memory Model
2.4.2 Big Memory Model .

2-20Compiling, Linking, and Running TEST.C2.5

3 C System Library

3-13.1 UNIX V7 Compatibility .
3.2 System Library Routines 3-2

3-5abs Function
access Function
atoi, atof, atol Functions
brk, sbrk Functions
calloc, malloc, zalloc, realloc, free Functions . .
chmod, chown Functions

3-6
3-7
3-8
3-9
3-11

v

Table of Contents
(continued)

3-12
3-13
3-14
3-15
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-25
3-26
3-27
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-40
3-43
3-45
3-46
3-47
3-48
3-49
3-52
3-53
3-54
3-55
3-56
3-57
3-58
3-59
3-60
3-61
3-62
3-63
3-64
3-65

close Function
cos, sin Functions
creat, creata, creatb Functions
ctype Functions
execl Function
exit, _exit Functions
exp Function
fabs Function
fclose, fflush Functions
feof, terror, clearerr, fileno Functions . . .
fopen, freopen, fdopen Functions
fread, fwrite Functions
fseek, ftell, rewind Functions
getc, getchar, fgetc, getw, getl Functions . .
getpass Function
getpid Function
gets, fgets Functions
index, rindex, strchr, strrchr Functions . . .
isatty Function
log, loglO Functions
lseek, tell Functions
mktemp Function
open, opena, openb Functions
perror Function
printf, fprintf, sprintf Functions
putc, putchar, fputc, putw, putl Functions . •
puts, fputs Functions
qsort Function
rand, srand Functions
read Function
scant, fscanf, sscanf Functions
setbuf Function
setjmp, longjmp Functions
sqrt Function
strcat, strncat Functions
strcmp, strncmp Functions
strcpy, strncpy Functions
strlen Function
swab Function
tan, atan Functions
toascii, tolower, toupper Functions
ttyname Function
ungetc Function
unlink Function
write Function

vi

Table of Contents
(continued)

4 Input/Output Conventions

4.1 Regular File Access 4-1
4-24.2 Stream File Access

4-34.3 Peripheral Devices

4-34.4 Standard I/O Files

5 Assembler Routine Interfacing

5-15.1 External Naming Conventions

5.2 Calling an Assembly Routine from a C Module . .
5.3 Calling a C Module from an Assembly Routine . .

5-2
5-3
5-35.4 Argument Passing

5-65.5 Function Return Values

5-65.6 Accessing External Data

6 Internal Data Representation

6-16.1 Character Storage

6-26.2 Integer Storage

6-36.3 Single-precision Floating-point
6-36.4 Double-precision Floating-point
6-46.5 Pointer

7 Overlays

7-37.1 Writing Programs That Use Overlays

7-47.2 LINK-86 Command Lines for C Overlays

7-57.3 General Overlay Constraints

vii

Appendixes

A System Library Routine Summary A-l

B Compiler Option Summary B—1
C-lC Error Messages

D Variations among Compilers D-l

E C Style Guide E-l
ModularityE.l E-l

Module Size
Intermodule Communication
Header Files

E-lE.1.1
E.l.2
E.l.3

E-l
E-l

Required Coding Conventions E-2E.2
E-2E.2.1 Variable and Constant Names . . .

E.2.2 Variable Types
E.2.3 Expressions and Constants
E.2.4 Pointer Arithmetic
E.2.5 String Constants
E.2.6 Initialized and Uninitialized Data
E.2.7 Recommended Module Layout

E-3
E-4
E-4E-5
E-5
E-6

E.3 Coding Suggestions E-7

F—1F Sample C Modules

viii

Tables, Figures, and Listings

Tables

1-1. C System Disk Files 1-2
2-1. Compiler Command Line Options 2-3
3-1.
3-2.
3-3.
3-4.3-5.
3-6.

Variable Type Macro Definitions
Storage Class Macro Definitions
ctype Functions
perror Error Codes
Output Conversion Characters
Input Conversion Characters

3-3
3-3
3-15
3-38
3-413-50

4-1. Standard I/O File Definitions 4-3
5-6Function Return Registers

Compiler Command Line Options

5-1.
B-l. B-l

C-lC-l. Error Messages

Variable Type Macro Definitions
Storage Class Macro Definitions

E-l.
E-2.

E-3
E-3

Figures

Minimum C System Operation1-1. 1-4
Small Memory Model
Big Memory Model .

2-1.
2-2. 2-18

2-19
5-1.
5-2.

Stack for Small Model
Stack for Big Model

5-5
5-5

Character Storage
Short Integer Storage
Long Integer Storage
Single-precision Floating-point Storage . .
Double-precision Floating-point Storage . .

6-16-1.
6-2.
6-3.
6-4.
6-5.

6-2
6-2
6-3
6-4

Using Overlays in a Large Program
Tree Structure of Overlays . . .

7-1.
7-2.

7-2
7-3

ix

Tables, Figures, and Listings
(continued)

Listings

F-l_Printf Module
Printf Internal Routine_Prnt8 Procedure . . ._Prntx Function . . .
Conv Function . . ._Putstr Function . . .
Prtl Function . . .

F-l.
F-2.
F-3.
F-4.
F-5.
F-6.
F-7.

F-3
F-7
F-8
F-9
F-10
F-ll

x

Section 1
Getting Started with C

1.1 System Requirements

To operate the C compiler, you must have all of the following
computer resources. Memory requirements specified below are minimum
values.

•8086 or 8088 CPU running CP/M-86.
•108K of user program area in addition to the space occupied by

the operating system.

•Enough disk space to hold the compiler during compilation.

•Enough disk space to hold the temporary file that the compiler
generates. Typically, the temporary space required is one-
third to one-half the size of your source file plus include
files.

• Enough disk space to hold the object file that the compiler
creates.

1.2 Run-time Requirements

You must have all of the following computer resources to execute
programs compiled with the C compiler and linked with the system
subroutine libraries,
minimum values.

Memory requirements specified below are

• 8086 or 8088 CPU running CP/M-86
•from 10K to 32K bytes for system library modules plus space for

your program code

1.3 C Components

The Digital Research C software system consists of the two
executable components of the C compiler, two versions of the system
subroutine library, and two sample test programs,
components are the C compiler and the reverse preprocessor program.
The system libraries support two 8086/8088 memory models: small and
big models.
models. The C system also provides five special purpose files that
you can include in a C program with the linclude directive. Table
1-1 describes all the files on your C product disks.

The executable

Refer to Section 2.4 for an explanation of memory

1-1

1.3 C ComponentsC Language Programmer's Guide

Programmer's utilities for use with the Digital Research C system
include the LINK-86 linkage editor, the LIB-86 library utility, the
XKEF-86 assembly language cross-reference utility program, and the
RASM-86 relocatable assembler.

Table 1-1. C System Disk Files

DescriptionDisk FileComponent

compiler supervisory module
preprocessor
parser and code generator
listing/disassembly file merge
utility
error messages

compiler DRC.CMD
DRC860.CMD
DRC861.CMD
DRC862.CMD

DRC.ERR
DRCRPP.CMD
R.CMD

reverse preprocessor program
program to run parts of the
compiler

macro definitions for standard
input and output; contains a
directive that includes PORTAB.H
macro definitions for program
portability
ASCII character classification
routines
nonlocal program jump routine
macro definitions for the perror
function

#include
files

STDIO.H

PORTAB.H
CTYPE.H
SETJMP.H
ERRNO.H

small model system subroutine
library
big model system subroutine
library

libraries CLEARS.L86
CLEARL.L86

program ready to compile,
link, and run
C test program that ensures
proper component functioning
Sample start-up routine
Updated notes on C software and
documentation.Use TYPE command
to display notes.

sample
programs

SAMPLE.C C

TEST.C
STARTUP.A86
READ.ME

1-2

1.4 Minimum ConfigurationC Language Programmer's Guide

1.4 Minimum Configuration

You must have the following four files to execute the C compiler in
minimum configuration:

compiler supervisory module
preprocessor
parser and code generator
program to run other parts of the compiler

• DRC.CMD
• DRC860.CMD
•DRC861.CMD
• R.CMD

The compiler supervisory module, DRC.CMD, executes the other
compiler modules in the proper sequence. DRC860.CMD is the
preprocessor, and DRC861.CMD is the parser and code generator.

The compiler error messages file, D RC.ERR, and the
listing/disassembly file-merge utility, DRC862.CMD, are not required
during compilation. If DRC.ERR is not on-line during compilation,
the compiler returns error messages by number only. DRC862.CMD
merges listing and disassembly files together for a complete
interlist display when you use the compiler interlist option.
The listing file contains the source code lines from your C program.
The disassembly file contains compiler generated assembly code. The
assembly code the compiler generates is actually an approximation of
the correct 8086/88 assembly code. It is provided for debugging
purposes only.
If DRC862.CMD is not on-line during compilation, the interlist
option is ineffective and the compiler outputs the listing and
disassembly files separately.
Following compilation, the linkage editor requires one of the system
library files to create the executable program. The library files
do not have to be on-line during compilation. The following diagram
illustrates the minimum C system in operation.

1-3

1.4 Minimum ConfigurationC Language Programmers Guide

CLEARS.L86 (OR)
CLEARL.L86

.SYM FILE
SYSTEM
LIBRARY .MAP FILE

SOURCE
PROGRAM

OBJECT
PROGRAM

C EXECUTABLE
PROGRAMLINK-86

COMPILER

CPROGRAM.CMDCPROGRAM.OBJ LINK86.CMDCPROGRAM.C DRC.CMD
DRC860.CMD
DRC861.CMD
R.CMD

Minimum C System OperationFigure 1-1.

1.5 A Simple Demonstration

The following simple demonstration illustrates the standard
procedure used to create an executable program written in C. If you
are an experienced C programmer, you might want to skip this section
and continue with Section 2.
The following instructions assume you already know how to use your
operating system. The instructions are for C on a CP/M-86-based
system with two floppy-disk drives.
First, make back-up copies of your master C product and programmer's
utilities disks, and store the original disks in a safe place. Your
operating system disk should be in drive A.

1) Create a C work disk.

Using a file copy program, such as PIP, create a C work
disk that contains the four compiler files required for
minimum configuration, the linkage editor, the small model
system library, and SAMPLE.C. If you do not have enough
room on disk for all the files, you can place the linkage
editor and library on a separate disk. Your work disk or
disks should contain all of the following files:

1-4

C Language Programmer's Guide 1.5 A Simple Demonstration

compiler supervisory module
preprocessor
parser and code generator
program to run other parts of the compiler
linkage editor
small model system library
sample program

•DRC.CMD
•DRC860.CMD
•DRC861.CMD
• R.CMD
•LINK86.CMD
•CLEARS.L86
•SAMPLE.C

With your operating system disk in drive A, place your new
C work disk that contains SAMPLE.C in drive B. SAMPLE.C
uses a simple for-loop and the printf function to print a
short series of messages. You can display the SAMPLE.C
source program on your terminal with the CP/M-86 TYPE
command. Make sure drive B is the default drive and enter
the following command:

B>TYPE SAMPLE.C
The following output appears on your terminal screen:

main()
{

int val?

for (val = 0? val <= 3; val++)
printf("%d TESTING C\n", val)?

printf("\nn);
printf("FINISHED!\nn);

}

B>

2) Compile the program.
To compile the SAMPLE.C source program, enter the following
command. Be sure drive B is the default drive.

B>DRC SAMPLE

Note that you do not have to specify the ,C filetype for
the source program. First, the compiler searches the
default drive for SAMPLE with no filetype.
compiler cannot find SAMPLE, it automatically searches for
SAMPLE.C.

When the

The compiler displays a sign-on banner as shown in the
following display. Sign-on banners might vary slightly for
different versions of the compiler. Next the preprocessor
and parser/code generator modules display short messages
indicating execution,
compiler displays a memory allocation message. The memory

At the end of compilation, the

1-5

1.5 A Simple DemonstrationC Language Programmer's Guide

allocation message indicates the amount of space that the
compiler allocates for the different parts of the program.
Values in the memory allocation message might vary slightly
for different versions of the C compiler. Section 2.1.4
describes the different parts of the memory allocation
message in more detail.

Version X.X
All Rights Reserved

Digital Research, Inc.
Digital Research C
Serial No. XXXX-XXXX-XXXXXX
Copyright (c) 1983

Digital Research C Version X.X — Preprocessor

Digital Research C Version X.X — Code Gen

160static: 27code: 67 extern:sample.c:

B>

The compiler compiles SAMPLE.C according to the 8086 small
memory model by default. Refer to Section 2.4 for an
explanation of memory models. The compiler then creates
the relocatable object file for the program. The compiler
names the object file with the same filename as the input
source file but with a .OBJ filetype. This is the default
object file naming convention. A directory for disk B
should have the new file SAMPLE.OBJ. If you are using two

separate work disks, copy SAMPLE.OBJ onto the disk that
contains LINK-86 and the small model system library. Place
the LINK-86 disk in drive B.

3) Link the program.

The SAMPLE.C file is compiled according to the small memory
model. Therefore, you must link SAMPLE.OBJ with the small
model system subroutine library.

You do not have to specify the library name explicitly in
the linker command line if the library file is on the
default drive. The compiler creates a special object

record in SAMPLE.OBJ. This record contains information
that tells LINK-86 which system library to search for any
required routines. To run LINK-86, enter the following
command. Be sure drive B is the default drive.

B>LINK86 SAMPLE

1-6

1.5 A Simple DemonstrationC Language Programmers Guide

LINK-86 assumes a filetype of .OBJ for the object file you
specify in the command line. LINK-86 displays a sign-on
message and some allocation messages on your terminal as
shown in the following display. Values in the allocation
messages might vary slightly for programs compiled with
different versions of the C compiler.

LINK-86 Linkage Editor
Serial No. XXXX-XXXX-XXXXXX
Copyright (c) 1982,1983

Version X.X
All Rights Reserved

Digital Research, Inc.

02F2E
OODBC

CODE
DATA

USE FACTOR: 04%

B>

If you get no error messages, the program has been linked
successfully.
program.
command file SAMPLE.CMD.
Programmer's Utilities Guide to learn how LINK-86 works.

LINK-86 creates a directly executable
The directory for disk B should have the new

Refer to Section 7 of the

4) Run the program.

To run the SAMPLE.CMD program, enter the following command.
Be sure drive B is the default drive. Notice that you do
not have to specify the .CMD filetype.

B>SAMPLE

The following output appears on your terminal screen:

0 TESTING C
1 TESTING C
2 TESTING C
3 TESTING C

FINISHED

B>

1-7

1.5 A Simple DemonstrationC Language Programmer's Guide

If your C software does not seem to operate correctly, check the
system requirements listed in Section 1.1 and the run-time
requirements listed in Section 1.2.
complies with the specified guidelines,
detailed explanation of the compiling, linking, and running
procedures.

Make sure your equipment
Section 2.5 provides a more

End of Section 1

1-8

Section 2
Operating C

The Digital Research C compiler is especially suited to commercial
systems and applications development. Enhanced diagnostic features,
such as compiler information message display, error reporting, and a
listing/disassembly file-merge utility, provide expanded visibility
of compiler-generated information to simplify debugging and program
maintenance. I

2.1 Compiler Operation

To use the full C compiler configuration, the following six files
must be on-line:

compiler supervisory module
preprocessor
parser and code generator
listing/disassembly file-merge utility
program loader utility
compiler error messages

•DRC.CMD
•DRC860.CMD
•DRC861.CMD
•DRC862.CMD
•R.CMD
•DRC.ERR

You can place DRC860.CMD, DRC861.CMD, and DRC862.CMD on different
drives for space considerations using the -0, -1, and - 2 compiler
command line options, respectively.
described in Section 2.1.3. DRC.CMD and DRC.ERR must both be on the
default drive,
drive.

Command line options are

Your source program file can be on any logical

The compiler takes a C source program as input and generates an
object program in the Intel relocatable object file format. During
compilation, the compiler creates temporary work files named
CTEMP.TOK and COBJ.TMP. Unless compilation is unsuccessful, you
never see a temporary file listed in a directory. The compiler
erases the files automatically when compilation is finished.
The size of a temporary file varies with the size of your source
program.
compilation is approximately one-third to one-half the size of your
source file or files. If you do not have enough work space on disk
for the compiler, you can break up large programs into modules and
compile each module separately.

The total amount of temporary space required during

2-1

2.1 Compiler OperationC Language Programmer's Guide

2.1.1 Compiler Command Lines

The command line invokes the compiler, specifies the source file to
compile, and passes special instructions to the compiler in the form
of command line compiler options. A command line cannot exceed 128
characters. Compiler command lines use the following general
format:

option switches

Note that you do not have to specify the .C filetype explicitly for
the source program in the command line. The compiler assumes a .C
filetype unless you specify otherwise.

DRC source file

2.1.2 Stopping the Compiler

To stop the compiler during processing, press any console key. The
compiler displays the following message:

Stop DRC (Y/N)?

Type a lowercase or uppercase Y to stop processing. The compiler
immediately returns control to the operating system. If you type
any character except Y, the compiler resumes processing.

2.1.3 Compiler Command Line Options

Command line option switches are reserved characters (letters and
digits) that send special instructions to the compiler. An option
switch specification consists of a dash followed by the reserved
character.
reserved character,
between each dash/character combination that you use in a command
line.

You cannot place spaces between the dash and the
However, you must place at least one space

Notice that certain option switches require an additional parameter.
You cannot place spaces between the option character and the
parameter.
switches in lowercase or uppercase and you can place option switches
anywhere in a command line. For example, the following three
command line examples produce the same results.

Under CP/M-86, you can enter command line option

B>DRC PROGRAM.C -OPROGBIG.OBJ -B -F -H
B>drc -b -f -h -oprogbig.obj program
B>DRC -B -OPROGBIG.OBJ PROGRAM -f -h

The rest of Section 2.1.3 describes the command line option switches
in alphabetical order. Table 2-1 is a summarized description of the
option switches listed alphabetically.

2-2

2.1 Compiler OperationC Language Programmer's Guide

Table 2-1. Compiler Command Line Options

DescriptionOption

-a|files| Invoke LINK-86 automatically,
the object files and libraries to link.
Specify the filename and [I] for a LINK-86
command line input file.

"files" are

(Default isEnable big memory model,
small model.)-b

-d|name| Works likeDefine "name" as the value 1.
#define in the source code, but defines
names in lowercase only.

Use 8087 math coprocessor.-f
Suppress sign-on banner.-h

-i|drive:| Search specified disk drive for #include
files.

Disable short/long jump optimizer.-j
-1|name| Generate program listing. Send listing to

"name". (Default "name" is CON:).
Disable code optimizer for faster
compilation.-n

—o|filename| Specify name for object file,
filename does not contain a period, ".OBJ"
will be appended.

If the

Execute preprocessor module only,
output in file CTEMP.TOK.

Place-P

-q|number| Set number of code generator nodes to save
space in symbol table. (Default is 500;
minimum is 100.)

-r|name| Request program interlisting
assembly). Send interlisting to "name".
(Default "name" is CON:).

(reverse

-v|number| Set compiler message display level.
Should appear before other switches in
command line. "
to 5 to produce the following information:

-vl Display general information messages
only.

number" can range from 1

2-3

2.1 Compiler OperationC Language Programmer's Guide

Table 2-1. (continued)

DescriptionOption

Display a # character as compiler
processes each function.-v2
Display function name as compiler
processes each function.-v3
Display start/end messages for
tinclude files.-v4
Display filename and line number as
compiler processes each line.-v5

-w|number| Set error message display level,
can be 0, 1, or 2.

"number"
Default is -wO.

-wO Display all error messages.
-wl Suppress error warning messages.

-w2 Suppress all error messages.

Call an assembly routine to save and
restore registers rather than generate
code to do it in-line. Program compiles
smaller but runs slower. Use with small
model only.
Place temporary work files on specified
disk drive.

-x

-z|drive:|
-0|drive:| Specify location of compiler preprocessor

module (DRC860.CMD).

-l|drive:| Specify location of compiler parser and
code generator module (DRC861.CMD).

-2|drive:| S p e c i f y l o c a t i o n o f c o m p i l e r
listing/disassembly file merge utility
(DRC862.CMD).

-3|drive:| Specify location of LINK-86 (LINK86.CMD).

2-4

C Language Programmer's Guide 2.1 Compiler Operation

-a option

The -a option switch executes LINK-86 automatically at the end of
compilation. You must specify object files and any libraries other
than the system library after the -a in the compiler command line.
Alternatively, you can specify a LINK-86 input file using the INPUT
option. Refer to Section 7.11, "Command Input File Options," in the
Programmer's Utilities Guide for more information on the LINK-86
INPUT option.
The following command line example compiles a program named
PROGRAM.C and automatically links the object file that the compiler
creates with the small model system library. Notice that you do not
have to specify the object file name or library file name explicitly
after the -A if that object file is the only file to be linked with
the system library on the default drive.

B>DRC PROGRAM -A

In this example, the compiler, LINK-86, and the small model system
library are all on the default drive (B:).
option switch to specify a drive other than the default drive for
LINK-86.

You can use the -3

The compiler compiles PROGRAM.C according to the small memory model
and names the object file PROGRAM.OBJ both by default. The compiler
creates a special object record in PROGRAM.OBJ that tells LINK-86
which system library to search for required routines depending on
which memory model you specify for compilation,
appropriate system library file must be on the default drive.
Otherwise, LINK-86 displays the NO FILE error message, indicating
that you must specify the library and drive location explicitly.
The object record automatically specifies the LINK-86 SEARCH option
for library files. Therefore, LINK-86 only links modules from the
system library that are referenced in PROGRAM.C. Without the SEARCH
option, LINK-86 links in the entire system library, making the
executable program unnecessarily large,
creates an executable program named PROGRAM.CMD.
To link multiple object files and libraries, you must specify each
filename explicitly after the -A, including the name of the object
file that the compiler creates,
filespec after the -A in the command line,
compiles the program named PROGRAM.C, then links the object file
that the compiler creates with an object file named PROGTWO.OBJ and
the small model system library. Notice that you do not have to
specify the .OBJ filetype explicitly for the object files after the
-A.

Note that the

The preceding example

Use commas to separate each
The following example

B>DRC PROGRAM -APROGRAM,PROGTWO

The next example is identical to the first example, except the small
model system library is on the D drive. Notice that you must specify

2-5

C Language Programmer's Guide 2.1 Compiler Operation

the object file that the compiler creates explicitly after the -A
whenever you have additional explicit filespecs.

B>DRC PROGRAM -APROGRAM,D:CLEARL•L86[S]

Remember, in this case, you must specify the object file that the
compiler creates, the library file drive location, the library
filename, and the LINK-86 SEARCH option explicitly.
The last example is exactly the same as the first example, except
LINK-86 is on drive D. In this case, the system library is on the
default drive. You do not have to specify the object file and
library file explicitly.

B>DRC PROGRAM -A -3D:

Remember, a compiler command line cannot exceed 128 characters.

-b option

The -b option switch enables compilation according to the big memory
model.
For example, the following command line compiles PROGRAM.C according
to the big model:

(Refer to Section 2.4 for a description of memory models.)

B>DRC PROGRAM -B

The compiler creates the object file with the same filename as the
input source file, but with an .OBJ filetype. This is the default
object file naming convention. In this example, the filename is
PROGRAM. You should rename PROGRAM.OBJ to better identify the file
as a big model object file. A name such as PROGBIG.OBJ is easier to
identify. Alternatively, you can use the -o option to rename the
object file at compile time as shown in the following example:

B>DRC PROGRAM -OPROGBIG.OBJ -B

-d option

The -d option switch works like a #define in the source code.
However, any name that you specify after the -d in the command line
equates to the value 1. For example, the following command line
directs the compiler to equate the name factor with the value 1 in
the source file PROGRAM.C.

B>DRC PROGRAM -Dfactor

The next example directs the compiler to equate the name ref_22 with
the value 1 in the source file PROGRAM.C.

B>DRC PROGRAM -Dref 22

2-6

2.1 Compiler OperationC Language Programmer's Guide

-f option

The -f option switch directs the compiler to use the Intel 8087 math
coprocessor for floating-point arithmetic as shown in the following
example:

B>DRC PROGRAM -F

You must have the 8087 microprocessor to use the -f option. If you
do not specify -f, the compiler calls routines in the system library
for floating-point math. If you execute a program compiled with the
-f option on a computer that does not have an 8087 math coprocessor,
the program does not execute properly.

-h option

The -h option switch directs the compiler to suppress the standard
compiler sign-on banner and other compiler module sign-on messages.
The compiler supervisory module, DRC.CMD, displays the sign-on
banner by default,
parser/code generator modules display their sign-on messages by
default as shown below. Sign-on banners might differ slightly for
different versions of the compiler. The memory allocation message
appears last. When you specify -h, the compiler only displays the
memory allocation message.

Following the banner, the preprocessor and

Version X.X
All Rights Reserved

Digital Research, Inc.
Digital Research C
Serial No. XXX-XXXX-XXXXXX
Copyright (c) 1983

Digital Research C Version X.X — Preprocessor

Digital Research C Version X.X — Code Gen

350 static: 695 extern: 36code:test.c:

The following command line example directs the compiler not to
display the sign-on banner or module sign-on messages during the
compilation of PROGRAM.C. The compiler only displays the memory
allocation message.

B>DRC PROGRAM -H

2-7

2.1 Compiler OperationC Language Programmer's Guide

-i option

The -i option switch directs the compiler to search a specified disk
drive for #include files. #include files facilitate the handling of
declarations and groups of fdefine definitions. You specify
finclude files with the #include directive. Refer to Chapter 4.11,
"The C Preprocessor," in The C Programming Language for more
information on file inclusion. The following example directs the
compiler to search drive C: for finclude files specified in
PROGRAM.C.

B> DRC PROGRAM -IC:

-j option

The -j option switch directs the compiler to disable the short/long
jump optimizer. The jump optimizer converts long program branches
to short branches wherever possible in the program. The result is a
smaller object file. If you disable the jump optimizer, the result
is faster compilation, but a bigger object file. The following
example disables the jump optimizer for the compilation of
PROGRAM.C.

B>DRC PROGRAM -J

-1 option

The -1 option switch directs the compiler to generate a listing of
the source program. The preprocessor module, DRC860.CMD, actually
generates the listing. You can specify a device name to which to
send the listing. The compiler sends the listing to the console
(CON:) by default. The following example directs the compiler to
send the listing to the printer (LST:).

B>DRC PROGRAM -LLST:

-n option

The -n option switch directs the compiler to disable the code
optimizer as shown in the following example:

B>DRC PROGRAM -N

If you use the -n option, the result is faster compilation, but a
bigger object file.

2-8

2.1 Compiler OperationC Language Programmer's Guide

-o option

Use the -o option switch to specify a name for the object file the
compiler creates. The compiler creates the object file with the
same filename as the input source file, but with an .OBJ filetype.
This is the default object file naming convention. The following
command line example compiles PROGRAM.C and renames the object file
ONE.OBJ.

B>DRC PROGRAM -OONE.OBJ

-p option

The -p option switch directs the compiler to only execute the
The preprocessor creates a
If you use the -p option, the

compiler stops after executing the preprocessor module and leaves
CTEMP.TOK on disk. The reverse preprocessor program, DRCRPP.CMD,
accepts the data in CTEMP.TOK as input and generates a modified
version of your original input source file. Refer to Section 2.3
for additional information on the reverse preprocessor. The
following example executes the preprocessor and creates CTEMP.TOK
for PROGRAM.C.

preprocessor module, DRC860.CMD.
temporary work file named CTEMP.TOK.

B>DRC PROGRAM.C -P

-q option

Use the -q option switch to set the number of code generator nodes
for optimization. Nodes are the pieces of data the code generator
uses to build assembly instructions. The code optimizer works on
groups of nodes. You can set the size of these node groups.
The default number of code generator nodes is 500.
number of nodes to save space in the symbol table,
value is 100.
portions of code.
generator nodes for PROGRAM.C to 1000.
provides maximum optimization.

Use a smaller
The minimum

Use a larger number of nodes to optimize larger
The following example sets the number of code

A value of 1000 actually

B>DRC PROGRAM -Q1000

2-9

2.1 Compiler OperationC Language Programmer's Guide

-r option

The -r option directs the compiler to generate a program
interlisting. An interlisting is a combination of the source code
lines from your C program and the compiler-generated assembly code.
DRC862.CMD is the listing disassembly file merge utility module. It
merges the listing and disassembly files together for a complete
interlist display when you use the -r option.
The listing file contains the source code lines from your C program.
The disassembly file contains compiler generated assembly code. The
assembly code the compiler generates is only an approximation of
8086/88 assembly code. It is provided for debugging purposes only.

If DRC862.CMD is not on-line during compilation, the interlist
option is ineffective and the compiler outputs the listing and
disassembly files separately. You can use the -2 option switch to
specify a drive other than the default drive for DRC862.CMD.
Following compilation, the linkage editor requires one of the system
library files to create the executable program. The library files
do not have to be on-line during compilation.

You can specify a device name to which to send the interlisting.
The compiler sends the interlisting to the console (CON:) by
default. The following example directs the compiler to generate an
interlisting and sends it to the printer (LST:).

B>DRC PROGRAM -RLST:

/

-v option

The compiler can produce a variety of messages other than sign-on
and error messages to provide general compilation information and to
indicate different stages of compilation. Use the -v option to set
the compiler information message display level. Specify the -v as
the first option switch in a command line. The -v option does not
affect the display of sign-on and error messages.
You can specify a number ranging from 1 to 5 after the -v to select
the various types of information message display. If you do not
specify a number as shown in the following example, the compiler
assumes -vl and displays only general information messages:

B>DRC PROGRAM -V

General information includes messages such as "Using program.obj as
output file" and messages relating to other option switches. This
is why you must specify the -v as the first option switch in a
command line. The -v must be able to read the rest of the command
line to display the appropriate messages. The -v parameters 1
through 5 produce the following compiler information messages:

2-10

C Language Programmer's Guide 2.1 Compiler Operation

Display general information messages only.
Display a # character as compiler processes each function.
Display function name as compiler processes each function.
Display start/end messages for include files.
Display filename and line number as compiler processes
each line.

-vl
-v2
-v3
-v4
-v5

Each -v parameter except -v2 and -v3 operates in a hierarchical
fashion.
automatically activates -vl, and so on. However, the -v2 and -v3
switches are mutually exclusive. When you specify -v3, the compiler
automatically activates -vl but not -v2. Note that when you specify-v4 or -v5, the compiler activates the -v3 switch and not -v2. For
example, the following command line directs the compiler to display
all messages corresponding to -v5, -v4, -v3, and -vl switches:

In other words, when you specify -v2, the compiler

B>DRC PROGRAM -V5

-w option

Use the -w option switch to set the compiler error message display
level. Compiler error messages can be divided into two different
categories: error reports and error warnings. Error reports
indicate mistakes in your source program, such as syntax errors and
improper data type specifications. Error warnings effectively
indicate that some error can occur if you do not take some
corrective action. Refer to Section 2.1.5 for additional
information on error messages.
You can specify a number ranging from 0 to 2 after the -w to select
the display level. The parameters 0 through 2 produce the following
results:

-wO Display all error messages.-wl Suppress error warning messages.
-w2 Suppress all error messages.

For example, the following command line directs the compiler to
display only error reports:

B>DRC PROGRAM -Wl

2-11

2.1 Compiler OperationC Language Programmer's Guide

-x option

Use the -x option with the small memory model to call special
assembly routines from the system library that save and restore
registers for interfacing C modules and assembly routines,
cannot access these routines explicitly from a program. If you do
not use -x or if you use the big memory model, the compiler
generates code to save and restore registers in-line. Using -x with
the small model, your program is slightly smaller but runs a little
more slowly. Refer to Section 5 for more information on interfacing
assembly routines with C modules,
example calls the special assembly routines to save and restore
registers in PROGRAM.C.

You

The following command line

B>DRC PROGRAM -X

-z option

During compilation, the compiler creates temporary work files named
CTEMP.TOK and COBJ.TMP. If you do not have enough work space on
disk for the temporary files, you can use the -z option switch to
place them on a specified disk drive. You specify the drive after
the -z in the command line. The compiler erases the files
automatically when compilation is finished. The following example
directs the compiler to place the temporary files on the D: drive.

B>DRC PROGRAM -ZD:

-0 option

Use the -0 option switch to specify a drive other than the default
drive for the compiler preprocessor module, DRC860.CMD. This option
is handy if you do not have enough room on one disk for all the
compiler modules.
supervisory module that the preprocessor is on the F: drive.

The following example informs the compiler

B>DRC PROGRAM -OF:

-1 option

Use the -1 option switch to specify a drive other than the default
drive for the compiler parser and code generator module, DRC861.CMD.
This option is handy if you do not have enough room on one disk for
all the compiler modules,
compiler supervisory module that the parser and code generator
module is on the D: drive.

The following example informs the

B>DRC PROGRAM -ID:

Note that the compiler writes the temporary files on the default
drive unless you specify otherwise, using the -z option switch.

2-12

C Language Programmer's Guide 2.1 Compiler Operation

-2 option

Use the -2 option switch in conjunction with -r to specify a drive
other than the default drive for the compiler listing/disassembly
file merge utility, DRC862.CMD. This option is handy if you do not
have enough room on one disk for all the compiler modules,
following example directs the compiler to generate a program
interlisting and informs the compiler supervisory module that the
listing/disassembly file merge utility is on the C: drive,
compiler sends the interlisting to the console (CON:) by default.

The

The

B>DRC PROGRAM -R -2C:

-3 option

Use the -3 option switch in conjunction with -a to specify a drive
other than the default drive for the link editor, LINK86.CMD. This
option is handy if you do not have enough room on one disk for both
the compiler and link editor. The following command line example
automatically invokes LINK-86 after compilation, but informs the
compiler that LINK-86 is on the D: drive.

B>DRC PROGRAM -APROGRAM -3D:

2.1.4 Memory Allocation Data

At the end of compilation, the compiler displays a single message
that indicates the amount of memory used for certain memory areas.
The message appears as shown below:

|filename:|

The filename is the name of the input source file,
numbers represented in the preceding example by nnnn are decimal
values that indicate the number of bytes used for each memory area.
The static area includes all variables specifically declared as
static and all literal character strings,
includes all variables declared explicitly or implicitly external.

static: nnnncode: nnnn extern: nnnn

The three

The external area

2.1.5 Error Messages

Compiler error messages can be divided into two different
categories:
indicate mistakes in your source program, such as syntax errors and
improper data type specifications. Error reports include messages,
such as number 52, "Right parenthesis) is missing" and number 7,
"Conflicting data type specified for a function."

error reports and error warnings. Error reports

2-13

2.1 Compiler OperationC Language Programmer's Guide

Error warnings effectively indicate that an error can occur if you
do not take some corrective action. For example, error message 83
is a warning that suggests caution using the indirection operator
with integers. Error message 83, listed in Appendix C, reads as
follows:

WARNING: Indirection for non-pointers is not
portable.

Integers can be indirected successfully in
Digital Research C (small model only) and
PDP-11 C. Indirection is not portable.
This is an ERROR WARNING message.

If your program uses the indirection operator with integers and is
configured according to the big memory model, an error can occur.
Some warnings, such as number 95, "WARNING: Subscript is truncated
to short int," simply inform you of a certain activity taking place
during compilation.
Each compiler error message corresponds to an assigned error number.
Refer to Appendix C for a summary of error messages listed in
numerical order. Appendix C also provides suggestions on how to
correct certain errors.

83

The compiler displays both types of error messages in the following

format:

filename: line number: Error number: message text

The filename is the name of your input source file. The line number
indicates which line in the source program contains the error,
number that follows the word Error in the message corresponds to the
assigned error message number listed in Appendix C. The message
text is a literal description of the error. The message text does
not display if the DRC.ERR file is not on-line during compilation.

You can use compiler option switch -w to change the error message
display level. You can have the compiler display all messages,
suppress only the warning messages, or suppress all messages. Refer
to Section 2.1.3, concerning the use of compiler option switches.

The C compiler detects a maximum of 10 errors, then aborts
compilation. The compiler only displays one error message for each
source code line. The compiler counts multiple errors in one source
line as a single error.

The

2-14

2.2 Start-up RoutinesC Language Programmer's Guide

2.2 Start-up Routines and Stand-alone Programs

A start-up routine controls the execution of a program. It sets up
the operating environment for program execution by initializing the
stack pointer, segment registers, and heap. The start-up routine is
contained in the system library and linked into the executable
program automatically.

The standard start-up routine in the system library is named _START.
START sets up the operating environment to execute a program under

After setting up the environment,CP/M-86.program's "main" routine for execution. The main routine in all C
programs is a function named main(). The "main" routine returns
control to _START at the conclusion of execution. Lastly, _START
cleans up the environment by flushing buffers, closing files,
freeing storage, and returning control to the operating system.

START calls the

The source file named STARTUP.A86 on one of your C product disks is
an example of a start-up routine written in assembly language.
Study STARTUP.A86 to learn more about start-up routines.

You can also compile and link programs intended for stand-alone
execution. Stand-alone programs do not use the support services of
an operating system, but interface directly with the system
hardware. In other words, a stand-alone program is a systems level
program such as an operating system.

A stand-alone program accesses certain machine support subroutines
in the system library, such as the long divide and long shift
routines. You cannot access machine support subroutines explicitly.
The compiler generates code to access them implicitly.

To create an executable stand-alone program, object modules created
with the C compiler must be linked with the appropriate system
library and a start-up routine that sets up the desired target
operating environment. The START module in the system library sets

You must write a newup the operating environment for CP/M-86.
start-up routine for your new target environment. When linking the
program, your new start-up routine module must appear first in the
LINK-86 command line. As a result, LINK-86 does not link in the

START that is contained in the system library.standard

LINK-86 produces an .CMD file that is executable in your desired
target environment. The following LINK-86 command line example
creates a stand-alone program named PROG from the object modules
MODI.OBJ, MOD2.OBJ, and M0D3.0BJ. The file STARTUP1.0BJ contains
the start-up routine, _START, specially written for the target
environment. LINK-86 searches the default drive automatically for
the proper system library.

B>LINK86 PROG=STARTUPl,MODl,M0D2,MOD3

2-15

Start-up RoutinesC Language Programmer's Guide 2.2

Note that the start-up module must appear first in the LINK-86
command line. The system library must always appear after the new
start-up module in the command line if the system library is
specified explicitly. The object modules can appear in any order.
You can specify a different drive location for the system library in
the link command line. The following example links the three object
modules with the big model library. The library is on the d drive.

B>LINK86 PROG=STARTUP1,MODI,M0D2,M0D3,d:CLEARL.L86[S]
The LINK-86 search option, [S], after the library specification
selects only the routines from the library that the program
requires. If you omit the search option, LINK-86 links the entire
library into the .CMD file, making the executable program
unnecessarily large. You can use the LINK-86 MAP option to make
sure the proper routines are loaded from CLEAR. See Section 7 of
the Programmer's Utilities Guide for more information on LINK-86.
2.3 Reverse Preprocessor Operation

The reverse preprocessor program, DRCRPP.CMD, is useful to determine
how the compiler's preprocessor module, DRC860.CMD, handles macro
instruction expansions. This can be handy when the compiler reports
confusing error messages pertaining to macros.

The preprocessor module creates a temporary work file during
compilation named CTEMP.TOK. If you use the -p compiler option, the
compiler stops after executing the preprocessor module and leaves
CTEMP.TOK on disk. The reverse preprocessor program accepts the
data in CTEMP.TOK as input and generates a modified version of your
original compiler input file. The reverse preprocessor incorporates
all tinclude files and expands all macro instructions to generate
the modified file. Use the following command line to invoke the
reverse preprocessor:

B>DRCRPP <CTEMP.TOK
The < character specifies that the input for the reverse
preprocessor program comes from the CTEMP.TOK file.
Section 4.4 for information on input/output redirection. Refer to

2-16

C Language Programmer's Guide 2.4 Memory Models

2.4 Memory Models

The 8086/8088 microprocessor can address up to one million bytes of
memory.
memory areas:
memory areas, the 8086/8088 has a segment base register that points
to the base address of the corresponding area in memory.

Each address in memory points to one of three different
For each of theprogram code, data, or stack.

•The code segment register (CS) points to the base of the
program code.

•The data segment register (DS) points to the base of an
available data area.

•The stack segment register (SS) points to the base of the stack
area.

•The extra segment register (ES) points to the base of another
area, most often the heap.

C programs can have varying amounts of code, data, stack, and heap.
Memory models determine the size of the different areas and the
initial values for segment registers. For example, a memory model
called the small model supports separate code and data segments each
limited to 64K bytes. The C compiler supports two different memory
models providing a wide range of program configurations that take
full advantage of the 8086/8088 microprocessor architecture.
•small
• big

For a more complete understanding of memory models, read Section 7
in the Programmer's Utilities Guide on LINK-86 first. Section 7.5
in the utilities guide explains how LINK-86 combines the different
program segments into groups and positions them in the executable
.CMD file.
defines the terms CGROUP (code group) and DGROUP (data group).Section 7.5.2 in the Programmer's Utilities Guide

2-17

2.4 Memory ModelsC Language Programmer's Guide

2.4.1 Small Memory Model

The C compiler compiles all programs according to the small memory
model by default. The small model defines a separate code group
(CGROUP) and data group (DGROUP). Neither group can exceed 64K
bytes. The C compiler automatically generates the group names
CGROUP and DGROUP. For assembly language modules, use the RASM-86
GROUP directive to place segments into the proper group. Refer to
Section 3.3, "The GROUP Directive," in the Programmer's Utilities
Guide for more information.
LINK-86 places all segments belonging to the CGROUP in the code
section of the .CMD file and all segments belonging to the DGROUP in
the data section of the .CMD file. All data segments, including all
common segments allocated with external variables are located
together in low memory within the DGROUP, as shown in Figure 2-1. A
dynamically allocated data area called the heap grows up in memory
towards the stack,
segments.
towards the heap.

The heap is positioned on top of the data
The stack grows from the top of the data section down

MEMORY
HIGH STACK (GROWS DOWN)

DGROUP
(64K MAX.)HEAP (GROWS UP)

DATA
ES, SS
& DS -LOW

HIGH

CGROUP
(64K MAX.)CODE

LOW CS -

Figure 2-1. Small Memory Model

2-18

C Language Programmer's Guide 2.4 Memory Models

2.4.2 Big Memory Model

Use the big model for programs that use a maximum of 64K bytes of
data, a maximum of 64K bytes of stack, but require a large code
section and heap. To specify big model compilation, use the -b
command line compiler option. All program data segments including
all common segments allocated with external variables are located
together within the DGROUP (data group), as shown in Figure 2-2.
The compiler does not group code segments in the CGROUP (code
group). All program code segments are separate segments with a
unique name. No individual code segment can exceed 64K bytes. The
total amount of code is limited to the amount of available memory.
Do not use the RASM-86 GROUP directive to place code segments for an
assembly program into the CGROUP as you would for the small model.
All code must occupy separate segments with a unique name.
The stack occupies a separate segment limited to 64K. The initial
size of the stack is determined in the run-time start-up routine.
The final stack size can be adjusted at link time using the LINK-86
command line options. The heap data occupies the extra segment.
The heap size is limited only by the amount of available memory and
is adjustable at link time.

MEMORY
HIGH MAXIMUM

AVAILABLE
MEMORY

HEAP (GROWS UP)

LOW ES

HIGH

STACK (GROWS DOWN) (64K MAX.)
LOW SS

HIGH
DGROUP

(64K MAX.)
DATA SEGMENTS

LOW DS

HIGH
CODE SEGMENT

MAXIMUM
AVAILABLE
MEMORY

CODE SEGMENT

CODE SEGMENT
LOW CS

Figure 2-2. Big Memory Model

2-19

2.5 TEST.CC Language Programmer ’s Guide

2.5 Compiling, Linking, and Running TEST.C

The TEST.C program on your C product disks serves two purposes.
First, TEST.C is a C language source program that demonstrates how
to compile, link, and run a program in greater detail than the
simple demonstration in Section 1. Second, the program tests the
compiler, linker, and libraries with simple math routines to ensure
proper functioning of each component.
Be sure to make a copy of your C product and programmer's utilities
disks.
should already be familiar with your operating system and file copy
program. The following instructions are for a CP/M-86-based system
with two floppy-disk drives.

Store the original product disks in a safe place. You

1) Create a C work disk.
Using a file copy program, such as PIP, create a C work
disk that contains the five compiler files, the linkage
editor, the big model subroutine library, and TEST.C.
you do not have enough room on disk for all the files, you
can place the linkage editor and library on a separate
disk.
following files:

If

Your work disk or disks should contain all the

compiler supervisory module
preprocessor
parser and code generator
listing/disassembly file merge utility
program loader utility
compiler error messages
linkage editor
big model system library
sample program

•DRC.CMD
•DRC860.CMD
•DRC861.CMD
•DRC862.CMD
•R.CMD
•DRC.ERR
• LINK86.CMD
•CLEARL.L86
• TEST.C

With your operating system disk in drive A, place your new
C work disk that contains TEST.C in drive B.

2) Compile TEST.C
This compilation of TEST.C demonstrates the -b, -o, and -v
compiler options. Enter the following command. Be sure
drive B is the default drive.
B>DRC TEST -V3 -B -OTESTBIG.OBJ
Note that you must place at least one space between each
option switch specification in the command line. The -b
option switch directs the compiler to compile TEST.C
according to the big memory model. The -v3 option switch
tells the compiler to display the name of each program

2-20

2.5 TEST.CC Language Programmer's Guide

module and function as the compiler processes it.
Remember, -v3 automatically activates -vl. Therefore, the
compiler also displays general information messages.

However, -v2 and -v3 are mutually exclusive. Refer to
Section 2.1.3 for more information on option switches. The
-o option tells the compiler to name the object file
TESTBIG.OBJ to better identify the file as a big model
object file.
Note that you do not have to specify the .C filetype for
the source program explicitly in the command line. If you
do not specify a filetype, the compiler first searches for
the filename with no filetype. If the compiler cannot find
the filename with no filetype, it automatically searches
for that filename with a .C filetype. If the compiler
cannot find the filename with a .C filetype, it prints the
message "Unable to open filename.C for output."
The following output should appear on your terminal screen:

Version X.X
All Rights Reserved

Digital Research, Inc.
Digital Research C
Serial No. XXXX-XXXX-XXXXXX
Copyright (c) 1983

Digital Research C Version X.X — Preprocessor

Big Computation Model enabled
Using test.obj as output file

Digital Research C Version X.X — Code Gen

Processing: main

36static: 695code: 350 extern:test.c:
B>

DuringThe compiler displays the sign-on banner first,
processing, the preprocessor and the parser/code generator
modules display their sign-on messages indicating
execution. The compiler displays general information
messages and the name of each module and function processed
in the TEST.C program, as requested with the -v3 option
switch,
enabled

In the preceding display, "Big Computation Model
" and "Using test.obj as output file" are general

information messages. "Processing: main" indicates that
there is only one function in TEST.C named "main." The
memory allocation message appears last,
describes the different parts of the memory allocation

Section 2.1.4

2-21

2.5 TEST.CC Language Programmer's Guide

If you get no error messages, TEST.C has been
Section 2.1.5 explains error

message.
compiled successfully.
messages.
The compiler creates the relocatable object program named
TESTBIG.OBJ according to the big memory model. If you are
using two separate work disks, copy TESTBIG.OBJ onto the
disk that contains LINK-86 and the big model library.

3) Linking TEST.OBJ

The compiler creates a special object record in
TESTBIG.OBJ. The record contains information that tells
LINK-86 which system library to search for any required
routines. LINK-86 searches the library automatically if
the library is on the default drive, as it is in this
example. Enter the following command. Be sure drive B is
the default drive.

B>LINK86 TESTBIG

LINK-86 assumes a .OBJ filetype for the object files in the
command line unless you specify otherwise,
banner and some memory allocation messages display on your
terminal as shown below,
messages might vary for programs compiled with different
versions of the C compiler.

A sign-on
The values in the allocation

Version X.XX
All Rights Reserved

Digital Research, Inc.
LINK86 Linkage Editor
Serial No. XXXX-XXXX-XXXXXX
Copyright (c) 1982,1983

03E88
010A8

CODE
DATA

USE FACTOR: 07%

B>

If you get no error messages, the program has been linked
successfully,
program,
command file TESTBIG.CMD.
If the system library is not on the default drive, LINK-86
displays the NO FILE error message, indicating that you
must specify the appropriate drive explicitly in the link
command line. For example, the following command line
links TESTBIG.OBJ with the big model system library on the
D: drive.

LINK-86 creates the directly executable
A directory for disk B should have the new

2-22

C Language Programmer's Guide 2.5 TEST.C

B>LINK86 TESTBIG, D:CLEARL.L86[S]

The SEARCH option, [S], after the library name, tells
LINK-86 to select only the routines from the library that
the program requires. If you omit the SEARCH option, LINK-
86 links the entire library into the .CMD file, making the
executable program unnecessarily large.

A LINK-86 command line input file is handy if you want to
avoid having to type a long, complicated command line over
and over. Command line input files work with the LINK-86
INPUT option. Refer to Section 7.11, "Command Input File
Options," in the Programmer ’s Utilities Guide for more
information.

4) Running TESTBIG.CMD
To execute TESTBIG.CMD, enter the following command. Be
sure drive B is the default drive. Notice that you do not
have to specify the .CMD filetype explicitly for
TESTBIG.CMD.

B>TESTBIG

The following output should appear on your terminal.

**
WELCOME TO DIGITAL RESEARCH C **** ****

** This sample program tests the C compiler, **
** linker, and libraries. If the number in **
** parentheses matches the number to the
** immediate left, each component is working **
** properly.
**

**

int math: 4567 * 10 = 45670 (45670)
Test long int math: 1234 * 4567 = 5635678 (5635678)
Test float
Test double

Test

math: 1.234 + 0.001 = 1.235 (1.235)
math: 5635678.0 / 1234.0 = 4567.0 (4567.0)

Good Luck!

B>

You can compile, link, and run the TEST.C program according to

either of the two memory models: small or big. Be sure to specify
a different object filename to distinguish one model from another.
You can use the -o compiler option to name the object file during

compilation.

2-23

2.5 TEST.CC Language Programmer's Guide

If your C software does not operate correctly, check the system
requirements listed in Section 1.1 and the run-time requirements
listed in Section 1.2. Make sure your equipment complies with the
specified guidelines.
If you still cannot get your software to operate correctly, fill out
the Software Performance Report included in your C product package.
Describe your problem in detail and mail the report to the Digital
Research Technical Support Center. A prompt reply will follow.

End of Section 2

2-24

Section 3
C System Library

The run-time subroutine library for use with the Digital Research C
system is called CLEAR.
Environment And Run-time. CLEAR is a collection of subroutines for
input/output, dynamic memory allocation, system traps, and data
conversion. CLEAR is configured for both 8086/8088 memory models:
small and big. Refer to Section 2.4 for a description of memory
models.

CLEAR stands for Common Language

• CLEARS.L86 (small model version)
•CLEARL.L86 (big model version)

Both CLEAR library files are on your C product disks.

3.1 UNIX V7 Compatibility

The CLEAR system library is compatible with UNIX Version 7, allowing
programs to move easily between UNIX and CP/M-86. The system
library simulates many UNIX operating system calls and features.
However, CLEAR does not support the following UNIX operating system
calls:

• the fork/exec, kill, lock, nice, pause, ptrace, sync, and wait
primitives

• the acct system call

• the alarm function, or the stime, time, ftime, and times system
calls

•the dup and dup2 duplicate file descriptor functions

• the getuid, getgid, geteuid, getegid, setuid, and setgid
functions

• the indir indirect system call

• the ioctl, stty, and gtty system calls

• the link system call

• the chdir, chroot, mknod, mount, umount, mpx, pipe, pkon,
pkoff, profil, sync, stat, fstat, umask, and utime system calls

• the phys system call

3-1

3.1 UNIX V7 CompatibilityC Language Programmer's Guide

The following UNIX library functions are not available in C for
CP/M-86:

•assert
•crypt
•DBM
•getenv
•getgrent, getlogin, getpw, and getpwent functions
• 13tol, ltol3
• monitor
• itom, madd, msub, mult, mdiv, min, mout, pow, gcd, and rpow
• nlist
• pkopen, pkclose, pkread, pkwrite, and pkfail
• plot
• popen, pclose
•signal
• sleep
•system
• ttyslot

Entry points have been added to file open and creat calls to
distinguish between ASCII and binary files.

3.2 System Library Routines

This section presents the system library subroutines that you can
reference explicitly in a C program. Subroutines in the system
library that have one or two underscores preceding the function name
or that have the function name in capital letters are not accessible
directly. They are designed for access internally by other
functions in the library.

The remainder of this section alphabetically lists and explains C
language functions. Each explanation demonstrates proper use of the
function with four categories of information:

1) Declarations: examples of proper variable type and storage
class declarations

2) Calling Syntax: the proper format used to reference the
function

a description of the different parameters3) Arguments:
enclosed in parentheses that follow each function name

a description of what each function returns4) Returns:

In certain cases, a function may not return a value.

3-2

3.2 System Library RoutinesC Language Programmer's Guide

The declarations in this section use standard C type and storage
class specifiers- However, the file PORTAB.H contains a set of
variable type declaration keywords (Table 3-1) and storage class
declaration keywords (Table 3-2) that you can use to ensure
consistent internal representation of data types across different
processors.
Declaration keywords in PORTAB.H are macro definitions specified
with #define. Using standard type specifiers can be unsafe in
programs designed to be portable because of variations in internal
representation among different compilers. For example, an integer
declared with the keyword int might be 16-bits long on one processor
and 32-bits on a different processor. However, an integer declared
with the macro WORD is 16-bits on any processor. The standard I/O
file STD10.H already includes PORTAB.H. Therefore, if your program
does not include STDIO.H, you must include PORTAB.H explicitly to
use the macros shown in Tables 3-1 and 3-2.
The specifier FILE used in this section is defined in STDIO.H.
Refer to Chapter 7.6, "File Access," in The C Programming Language
for additional information.
Refer to Chapter 4.11, "The C Preprocessor," in The C Programming
Language for more information on file inclusion and macro
substitution. The following tables show the portability macros for
variable types and storage classes defined in PORTAB.H.

Table 3-1. Variable Type Macro Definitions

Standard TypeMacro

(32 bits)
(16 bits)
(16 bits)
(16 bits)
(8 bits)
(8 bits)
(16 bits)

signed long
signed short (int)
unsigned short (int)
short (int)
signed char
unsigned char
int
void (function return)

LONG
WORD
UWORD
BOOLEAN
BYTE
UBYTE
DEFAULT
VOID

Table 3-2. Storage Class Macro Definitions

Standard ClassMacro

register variable
auto variable
module static variable
global variable definition
global variable reference

REG
LOCAL
MLOCAL
GLOBAL
EXTERN

3-3

3.2 System Library RoutinesC Language Programmer's Guide

Identifiers in C can use both uppercase and lowercase characters.
However, you must type all library function names in lowercase, as
shown in the calling syntax portion of each function explanation.

With some care, you can make direct calls to the operating system
from a C program with the BDOS routine.
arguments as shown in the following syntax diagram.

The routine uses two

BDOS (argl, arg2)ret =

The first argument is the BDOS function number as defined in the
operating system. The first argument has an integer data type. The
second argument depends on which BDOS function you call. The data
type for the second argument varies depending on the requirements of
the specific function call.

BDOS function returns a value of character data type. If yourThe _
program requires a return value other than a character, you must
write your own assembly language routine that interfaces with the
operating system to make the change. Refer to your operating system
programmer's guide for a description of BDOS function calls.

3-4

C Language Programmer's Guide abs Function

abs Function

The abs function returns the absolute value of a number,
function is implemented as a macro in STDIO.H. Therefore, arguments
that involve side effects might not work as expected and should not
be used.
the argument increments the argument value twice,
increments the value x twice,
implemented as macros.

The abs

For instance, a call to abs that uses the ++ operator in
a = abs(*x++)

Do not declare functions that are

Declarations:

int val;
int ret; /* can be any type */

Calling Syntax:

ret = abs(val);

Arguments:

val — the input value can be any number

Returns:

ret the absolute value of val, can be any type

3-5

access FunctionC Language Programmer's Guide

access Function

The access function checks whether the calling program can access a
specified file. Under CP/M-86, the file is accessible if it exists.

Declarations:

char‘name;
int mode;
int ret, access();

Calling Syntax:

ret = access(name, mode);

Arguments;

name — points to a null-terminated filename

can be one of four values:mode

checks read access
checks write access
checks execute access
checks directory path access
CP/M-86 ignores a mode value of 0.

4
2
1
0

Returns:

0 if file access is allowed or -1 if not allowedret

CP/M-86 checks to see if the specified file exists.Note:

3-6

atoi, atof, atol FunctionsC Language Programmer's Guide

atoi, atof, atol Functions

The atoi, atof, and atol functions convert an ASCII digit string to
an integer, float, or long binary number, respectively,
compiler ignores all leading spaces, but permits a leading sign.
Conversion proceeds until the number of digits in the string is
exhausted. Each function returns a 0 when there are no more digits

See Chapter 2.7, "Type Conversions," in The C

The

to convert.
Programming Language for related information.

Declarations:

char
int
long
double fret, atof();

*string;
iret, atoi();
lret, atol();

Calling Syntax:

iret = atoi(digit string);
lret = atol(digit string);
fret = atof(digit string);

Arguments:

digit string — a pointer to a null-terminated string that
contains the number to convert

Returns:

iret — atoi returns the converted string as an integer.
lret — atol returns the converted string as a long binary

number.
fret — atof returns the converted string as a double-precision

floating-point number.
Each function returns 0 when there are no digits in the string.

the atoi, atof, and atol functions do not detect or report
Therefore, you cannot specify a limit to the number of

contiguous digits processed or determine the number of digits a
function processes.

Note:
overflow.

3-7

brk, sbrk FunctionsC Language Programmer's Guide

brk, sbrk Functions

The brk and sbrk functions extend the heap portion of your program.

Use the brk function to set a new upper bound for the heap. The
upper bound is an address called the break in UNIX terminology. A
valid break address is one that does not exceed the maximum extent
of the heap.
Use the sbrk function to extend the heap by an incremental number of
bytes.

Declarations:

int
char
char
int

ret, brk();
*addr;
*strt, *sbrk();
incr;

Calling Syntax:

ret = brk(addr);
strt = sbrk(incr);

Arguments:

the new break addressaddr

incr — the incremental number of bytes to extend the heap

Returns:

— brk returns a 0 if successful, or a -1 if it fails.ret

strt — sbrk returns a pointer that marks the beginning of the
heap extension, or a -1 if it fails.

3-8

C Programmer's Guide calloc, malloc, zalloc, realloc, free

calloc, malloc, zalloc, realloc, free Functions

1
The malloc, zalloc, calloc, realloc, and free functions manage a
block of dynamic area in memory called the heap. The heap is an
area of contiguous bytes aligned on a word boundary.

The malloc (memory allocation) function allocates a word-aligned
area in the heap and returns the starting address of the area. The
argument to malloc is the number of bytes to allocate.

The zalloc (zero allocation) function is just like the malloc
function except that it also zeros out the storage.

The calloc (chunk allocation) function allocates space for an array
in the heap and returns the starting address of the array,
first argument to calloc is the number of entries in the array,
second argument is the size in bytes of each entry.

The
The

The realloc function changes the size of a previously allocated
If possible, realloc uses free space adjacent to the original
Otherwise, realloc allocates a new, larger area,

copies the data from the old area to the new area, then frees the
old area.

area.
area. Realloc

Realloc returns a pointer to the new area.
The free function releases an area previously allocated with the
allocation functions described above.

Declarations:

int size, number;
char *ret, *addr,
char *realloc();

*calloc();*malloc(), *zalloc(),

Calling Syntax:

ret = malloc(size);
ret = zalloc(size);
ret = calloc(number, size);
ret = realloc(addr, size);
free(addr);

Arguments:

size
number — the number of array elements to allocate
addr

— the number of bytes to allocate

— points to the beginning of the allocated region

3-9

calloc, malloc, zalloc, realloc, freeC Programmer's Guide

Returns:

ret — the starting address of the allocated region if
successful, and 0 if the function fails

3-10

chmod, chown FunctionsC Language Programmer's Guide
1

chmod, chown Functions

Under UNIX, the chmod and chown system calls allow you to change the
protection mode and owner ID of an existing file, CP/M-86 does not
support protection mode or owner ID, so these calls have no effect.
They are included for UNIX compatibility.

Declarations:

‘name;
mode, owner, group, ret, chmod(), chown();

char
int

Calling Syntax:

ret = chmod(name,mode);
ret = chown(name,owner,group);

Arguments:

— points to a null terminated filename— the new mode for the file

— the new owner of the file

name
mode
owner
group — the new group number

Returns:

— 0 if the file exists, or -1 if the file does not existret

3-11

close FunctionC Language Programmer's Guide

close Function

The close function terminates access to a file or device. The close
function acts on files that have been accessed with the open or
creat functions. You must specify a file descriptor for the close
function, not a stream address. The fclose function closes stream
files. See Chapter 8.3, "Open, Creat, Close, Unlink," in The C
Programming Language for related information.

Declarations:

int ret, close(), fd;

Calling Syntax:

ret = close(fd);

Arguments:

fd — the file descriptor of the file to close

Returns:

— 0 if the function succeeds, or -1 if the function
detects an unknown file descriptor

ret

3-12

cos, sin FunctionsC Language Programmer's Guide

cos, sin Functions

1
The cos function returns the trigonometric cosine for double-
precision floating-point numbers,
trigonometric sine for double-precision floating-point numbers. You
must express all arguments in radians.

The sin function returns the

Declarations:

double cos();
double sin();
double val;
double ret;

Calling Syntax:

ret = cos(val);
ret = sin(val);

Arguments:

val — a double-precision floating-point number that expresses
an angle in radians

Returns:

ret — the cosine or sine expressed in radians of the argument
value

you can pass numbers declared as either float or double to
If you pass a float, C will automatically convert it

Note:
cos and sin.
to a double.

3-13

creat, creata, creatb FunctionsC Language Programmer 1 s Guide

creat, creata, creatb Functions

The creat, creata, and creatb functions create new disk files for
regular, low-level access. All three functions return a unique
number called a file descriptor. The file descriptor is a positive
short integer used to identify a file in a C program. Under CP/M-86
the file descriptor can range from 0 to 15. Refer to Chapter 8.1,
"File Descriptors," in The C Programming Language for more
information on file descriptors.

There is no difference between creat and creata. Both functions
create ASCII files. Use creatb to create binary files. Chapter
8.2, "Low Level I/O—Read and Write," in The C Programming Language
has related information on the creat function.

Declarations:

char *name;
int mode;
int fd, creat(), creata(), creatb();

Calling Syntax:

fd = creat(name,mode);
fd = creata(name,mode);
fd = creatb(name,mode);

Arguments:

name — a null-terminated filename string

the UNIX file mode, ignored by CP/M-86mode

Returns:

fd — the file descriptor for the opened file or -1 if an error
occurs

Note: ASCII files use a CTRL-Z to indicate the end-of-file. Binary
files do not use an end-of-file marker. Therefore, CP/M-86 cannot
directly detect the end of binary files. UNIX programs that use
creat with binary files compile successfully, but might execute
improperly.

3-14

ctype FunctionsC Language Programmer's Guide

ctype Functions
i

The file CTYPE.H defines a number of functions that classify ASCII
characters. These functions test whether a character belongs to a
certain character class. Each function returns a 0 if the
classification test is false and a nonzero value if the test is
true. See Chapter 7.9, "Some Miscellaneous Functions," in The C
Programming Language for related information on ctype functions.
The following table defines the ctype functions.

Vw/

Table 3-3. ctype Functions

Function Meaning

c is a letter
c is uppercase
c is lowercase
c is a digit
c is alphanumeric
c is a white space character
c is a punctuation character
c is a printable character
c is a control character
c is an ASCII character (< 0x80)

isalpha(c)
isupper(c)
islower(c)
isdigit(c)
isalnum(c)
isspace(c)
ispunct(c)
isprint(c)
iscntrl(c)
isascii(c)

The white space characters are the space (0x20), tab (0x09),
carriage return (OxOd), line-feed (0x0a), and form-feed (0x0c)
characters. Punctuation characters are not control or alphanumeric
characters. The printing characters are the space (0x20) through
the tilde (0x7e). A control character is any character less than a
space character (0x20).

Declarations:

#include <ctype.h>
int
char

ret;
/* or int c; */c;

3-15

ctype FunctionsC Language Programmer's Guide

Calling Syntax:

ret = isalpha(c);
ret = isupper(c);
ret = islower(c);
ret = isdigit(c);
ret = isalnum(c);
ret = isspace(c);
ret = ispunct(c);
ret = isprint(c);
ret = iscntrl(c);
ret = isascii(c);

1»

Arguments:

c — the character to classify

Returns:

ret — 0 if the classification test is false, or a nonzero
value if the test is true

Note: the ctype functions are implemented as macros. Therefore,
arguments that involve side effects, such as *p++, might not work as
expected and should be avoided. The functions return meaningless
values if arguments are not ASCII characters. Do not declare
functions that are implemented as macros.

3-16

execl FunctionC Language Programmer's Guide

execl Function

The execl function passes control from an executing C program to
another C program,
execution.
cannot effectively return to the original program. The new program
overlays the original program in memory. Therefore, if you chain
back to the original program, all data from the first execution are
lost.

You can chain any number of C programs for
However, once you pass control to a new program, you

Specify the name of a file that contains the program to chain to and
any arguments that the new program needs during execution. You must
have at least one argument in addition to the filename,
argument must point to a null-terminated string that is the same as
the filename string. This calling syntax procedure is based on UNIX
conventions.

The

Declarations:

int execl();
char‘name, *argl, *arg2;

Calling Syntax:

ret = execl(name, argl, arg2, ..., NULLPTR);

Arguments:

— a pointer to a null-terminated filename string
— pointers to null-terminated character strings

name
argX
NULLPTR — macro defined in PORTAB.H equal to 0

Returns:

-1 if the function failsret

if execl returns to the original program, an error hasNote:
occurred. The function returns a -1 and the errno external variable
is set to indicate the error,
additional information.

Refer to the perror function for

3-17

exit, _exit FunctionsC Language Programmer's Guide

exit, _exit Functions

The exit function passes control to CP/M-86. An optional completion
code might return,
dependent. CP/M-86 ignores the code, exit deallocates all memory
and closes any open files, exit also flushes the buffer for stream
output files.

The _exit function immediately returns control to CP/M-86, without
flushing buffers, closing open files, or deallocating memory. See
Chapter 7.7,"Error Handling—Stderr and Exit," in The C Programming
Language for related information.

The completion code is operating system-

Declarations:

int code;

Calling Syntax;

exit(code);
exit(code);

Arguments:

code — the optional, system-dependent completion code

Returns:

No return values

3-18

exp FunctionC Language Programmer's Guide

exp Function

The exp function returns the constant e raised to a specified
exponent. The constant e is the base of natural logarithms equal to
2.71828182845905 .

Declarations:

double val;
double ret;
double exp();

Calling Syntax:

ret = exp(val);

Arguments:

val — the exponent expressed as a double-precision floating-
point number

Returns:

ret — the value of e raised to the specified exponent

you can pass numbers declared as either float or double to
If you pass a float, C will automatically convert it to a

Note:
exp.
double.

3-19

fabs FunctionC Language Programmer's Guide

fabs Function

The fabs function returns the absolute value of a double-precisionfloating-point number.

Declarations:

double ret;
double fabs();
double val;

Calling Syntax:

ret = fabs(val);

Arguments:

val — a double-precision floating-point number

Returns:

ret — the absolute value of the floating-point number

you can pass numbers declared as either float or double to
If you pass a float, C will automatically convert it to a

Note:
fabs.
double.

3-20

C Language Programmer's Guide fclose, fflush Functions

fclose, fflush Functions

The fclose function writes all data in a stream file to disk and
closes the file. The fflush function writes all data in a stream

A pointer identifies the
"File Access," in The C

file to disk but leaves the file open,
stream to close. See Chapter 7.6,
Programming Language for related information.

Declarations:

int ret, fclose(), fflush()j
FILE *stream?

Calling Syntax:

ret = fclose(stream);
ret = fflush(stream);

Arguments:

stream — a pointer to a stream file control structure

Returns:

ret — 0 if the function succeeds, or -1 if the function
encounters a bad stream address or a write failure

3-21

feof, ferror, clearerr, filenoC Language Programmer's Guide

feof, ferror, clearerr, fileno Functions

The feof, ferror, clearerr, fileno functions enable stream file
manipulation in a system-independent manner.
Use the feof function to detect the end-of-file in a stream.
Use the ferror function to detect errors in a stream file. The
clearerr function clears any error detected. This is most useful
for functions such as putw, where no error indication returns for
output failures.

The fileno function returns the file descriptor associated with an
open stream. See the fdopen function.

Declarations:

int ret, fd;
int feof(), ferror(), fileno();
FILE *stream;

Calling Syntax:

ret = feof(stream);
ret = ferror(stream);
clearerr(stream);
fd = fileno(stream);

Arguments:

stream — a pointer to a stream file control structure

Returns:

ret — feof returns a nonzero value if the specified stream is
at the end-of-file, and zero if it is not.
ferror returns a nonzero value if an error occurs in a
specified stream file.ret

clearerr returns no value

— fileno returns the file descriptor associated with the
specified file.

fd

3-22

fopen, freopen, fdopen FunctionsC Language Programmer's Guide

fopen, freopen, fdopen Functions

The fopen, freopen, and fdopen functions associate an I/O stream
with a file or device.

The fopen and fopena functions are exactly the same. Both functions
open an existing ASCII file for I/O as a stream,
function opens an existing binary file for I/O as a stream,
specified file does not exist, the fopen, fopena, and fopenb
functions create the file. See Chapter 7.6, "File Access," and
Chapter 8.5, "Example—An Implementation of Fopen and Getc," in The
C Programming Language for related information on fopen.
The freopen and freopa functions substitute a new ASCII file for an
open stream. The freopb function substitutes a new binary file for
an open stream.

The fdopen function adds a stream file control structure to a file
opened for regular access.

The fopenb
If the

Declarations:

FILE *fopen(), *fopena(), *fopenb();
FILE *freopen(), *freopa(), *freopb();
FILE *fdopen();
FILE *stream;
char‘name,‘access;
int fd;

Calling Syntax:

stream = fopen(name, access);
stream = fopena(name, access);
stream = fopenb(name, access);
stream = freopen(name, access, stream);
stream = freopa(name, access, stream);
stream = freopb(name, access, stream);
stream = fdopen(fd, access);

Arguments:

— a pointer to a null-terminated filename stringname
stream — a pointer to a stream file control structure
access — the access string can be one of three characters:

read the file
write the file
append to a file

r
w
a

3-23

fopen, freopen, fdopen FunctionsC Language Programmer's Guide

Returns:

the stream address if the function succeeds, or 0 if
the function fails

stream

Note: ASCII files use a CTRL-Z to indicate the end-of-file. Binary
files do not use an end-of-file marker. Therefore, CP/M-86 cannot
directly detect the end of binary files. UNIX programs that use
fopen, freopen, or fdopen with binary files compile and link
correctly but might execute improperly.

3-24

fread, fwrite FunctionsC Language Programmer 1 s Guide

fread, fwrite Functions

i
The fread and fwrite functions transfer a stream of bytes between a
stream file and primary memory.
fread transfers bytes from a stream file to memory,
transfers bytes from memory to a stream file.

fwrite

Declarations:

int fread(), fwriteO;
char *buff;
int size, nitems;
FILE *stream;

Calling Syntax:

nitems = fread(buff, size, nitems, stream);
nitems = fwrite(buff, size, nitems, stream);

Arguments:

— the primary memory buffer address— the number of bytes in each item

— the number of items to transfer

buff
size
nitems
stream — points to an open stream file

Returns:

nitems — the number of items read or written, or 0 if an error
occurs, including EOF

3-25

fseek, ftell, rewind FunctionsC Language Programmer's Guide

fseek, ftell, rewind Functions

The fseek, ftell, and rewind functions position the read/write
pointer in a stream file,
console or listing device,
nonfile devices.

fseek and rewind have no effect on a
ftell returns a meaningless value for

The fseek function sets the read/write pointer to an arbitrary
offset in the stream.
The rewind function sets the read/write pointer to the beginning of
the stream.
The ftell function returns the present position of the read/write
pointer in the stream.

Declarations:

int ret, fseek(), rewind();
FILE *stream;
long offset, ftell();
int ptrname;

Calling Syntax:

ret = fseek(stream, offset, ptrname);
ret = rewind(stream);
offset = ftell(stream);

Arguments:

— points to a stream file— a signed offset measured in bytes
stream
offset
ptrname — The offset can start from one of three points:

0 from beginning of file
1 from current position
2 from end of file

Returns:

0 if the function succeeds and -1 if it failsret
offset — current position of the pointer in the stream

ASCII file seek and tell operations do not account for
A CTRL-ZNote:

carriage returns. The functions ignore carriage returns,
character at the end of the file is handled properly.

3-26

getc, getchar, fgetc, getw, get!C Language Programmer's Guide

getc, getchar, fgetc, getw, getl Functions

The getc, getchar, fgetc, getw, and getl functions perform input
from a stream.w
The getc function reads a single character from an input stream.
This function is implemented as a macro in STDIO.H. Arguments do
not create side effects.

The getchar function reads a single character from the standard
input. It is identical to getc(stdin) in all respects. See Chapter
7.2, "Standard Input and Output—Getchar and Putchar," and Chapter
7.6, "File Access," in The C Programming Language for related
information on getc and getchar.
The fgetc function is a function implementation of getc, used to
reduce object code size.
The getw function reads a 16-bit word from a stream, high-order byte
first. getw is compatible with the read function. No special
alignment is required.
The getl function reads a 32-bit long integer from a stream, in 8086
byte order. No special alignment is required.
Declarations:

4

int
FILE
int
long ilong,getl();

icharac, getchar(), fgetc();
stream;
iword, getw();

Calling Syntax:

icharac = getc(stream);
icharac = getchar();
icharac = fgetc(stream);
iword = getw(stream);
ilong = getl(stream);

Arguments;

stream — a pointer to a stream file control structure

Returns:

the character read from the stream
the word read from the stream

ichar
iword
ilong — the long word read from the stream, or -1 if a read

failure occurs

3-27

getcf getchar, fgetc, getw, getlC Language Programmer’s Guide

Note: errors that return from getchar are incompatible with UNIX
prior to UNIX Version 7. Errors that return from getl or getw are
valid values that might normally occur in a file. Use feof or
ferror to detect an end-of-file or read error.

3-28

getpass FunctionC Language Programmer's Guide

getpass Function

The getpass function reads a password from the console device.

The function issues a specified prompt, then reads the input
response without echoing the input to the console. The function
returns a pointer that points to the password, which is a null-
terminated string,
characters.

The string can contain eight or fewer

Declarations:

char *prompt;
char *getpass;
char *pass;

Calling Syntax:

pass = getpass(prompt);

Arguments:

prompt — a pointer to a null-terminated prompt string

Returns:

pass — a pointer to the password

the return value points to static data that is overwrittenNote:
upon each call to getpass.

3-29

getpid FunctionC Language Programmer's Guide

getpid Function

The getpid function is provided for UNIX V7 compatibility and serves
no purpose under CP/M-86. Under UNIX, getpid returns a dummy
process ID. Under CP/M-86, the return value is unpredictable.

Declarations:

int pid, getpid();

Calling Syntax:

pid = getpid();

Arguments

getpid uses no arguments

Returns:

pid — a dummy process-ID on single-tasking operating systems

3-30

gets, fgets FunctionsC Language Programmer's Guide

gets, fgets Functions

fgets
gets
Both

The gets and fgets functions read strings from stream files,

reads a string including a newline (line-feed) character,
deletes the newline and reads only from the standard input,
functions terminate the strings with a null character.

You must specify a maximum character count with fgets, but not with
gets. This count includes the terminating null character. ~
Chapter 7.8, "Line Input and Output," in The C Programming Language

for related information on fgets.
See

Declarations:

char *addr;
char *stg;
char *gets(), *fgets();
int max;
FILE *stream;

Calling Syntax:

addr = gets(stg);
addr = fgets(stg, max, stream);

Arguments:

— pointer to a null terminated string— the maximum character count
stg
max
stream — points to the input stream

Returns:

addr — the string address

3-31

index, rindex, strchr, strrchrC Language Programmer's Guide

index, rindex, strchr, strrchr Functions

The index, rindex, strchr, and strrchr functions locate a specified
character in a string. index and strchr return a pointer to the
first occurrence of the character. rindex and strrchr return a
pointer to the last occurrence of the character. See Chapter 4.1,
"Basics," in The C Programming Language for related information on
index.

Declarations:

char charac;
char *stg;
char *ptr;
char *index(), *rindex(), *strchr(), *strrchr();

Calling Syntax:

ptr = index(stg, charac);
ptr = rindex(stg, charac);
ptr = strchr(stg, charac);
ptr = strchrjstg, charac);

Arguments:

— pointer to a null-terminated string— the character to look for
stg
charac

Returns;

ptr — the address of the specified character, or 0 if the
character does not occur in the string

strchr is identical to index, and strrchr is identical to
They are alternate names for the same entry points, but

index and

Note;
rindex.
strchr and strrchr are the preferred entry point names,
rindex are included for compatibility with UNIX Version 7.
Under UNIX Level III, rindex has been eliminated and index is a
function similar to but not quite the same as strchr.
Level III, the second argument to index is a pointer to a null-
terminated string instead of a single character argument,
convert index and rindex to strchr and strrchr respectively for
compatibility with later releases of UNIX.

Under UNIX

Plan to

3-32

isatty FunctionC Language Programmer's Guide

isatty Function

A CP/M-86 program can use the isatty function to determine whether a
file descriptor is attached to the CP/M-86 console device (CON:).

Declarations:

int ret, isattyO , fd;

Calling Syntax:

ret = isatty(fd);

Arguments:

fd — an open file descriptor

Returns:

ret — 1 if the file descriptor is attached to CON:, and 0 if
not attached to CON:

3-33

log, loglO FunctionsC Language Programmer's Guide

log, loglO Functions

The log function returns the natural logarithm of a double-precision
floating-point number. The loglO function returns the base 10
logarithm of a double-precision floating-point number.

Declarations:

double val;
double ret;
double log();
double loglO();

Calling Syntax:

ret = log(val);
ret = loglO(val);

Arguments:

val — a double-precision floating-point number

Returns:

ret — the natural or base 10 logarithm of the double-precisionfloating-point number

Note: you can pass numbers declared as either float or double to
log and loglO. If you pass a float, C will automatically convert it
to a double.

3-34

lseek, tell FunctionsC Language Programmer's Guide

lseek, tell Functions

The lseek function positions a file referenced with a file
descriptor to an arbitrary offset. Do not use this function with
stream files, because the data in the stream buffer might be
invalid. Use the fseek function with stream files. See Chapter
8.4, "Random Access—Seek and Lseek," in The C Programming Language
for related information.
The tell function determines the file offset for an open file
descriptor.

Declarations:

int fd;
int ptrname;
long offset;
long ret, lseek(), tell();

Calling Syntax:

ret = lseek(fd, offset, ptrname);
ret = tell(fd);

Arguments:

— the open file descriptor— a signed byte offset in the file
fd
offset
ptrname — the offset interpretation, which can be one of three

numbers:

0 - from the beginning of the file
1 - from the current file position

from the end of the file2

Returns:

ret — resulting absolute file offset, or -1 if an error occurs

Note: these functions are incompatible with Versions 1 through 6 of
UNIX.

3-35

mktemp FunctionC Language Programmer's Guide

mktemp Function

The callingThe mktemp function creates a temporary filename,
argument is a character string ending in six upper- or lowercase X
characters. The temporary filename overwrites these characters. If
you specify no x characters in the argument string, the original
filename remains unchanged.
characters in the argument string, unpredicable results occur.

If you specify fewer than six x

Declarations:

char *string?
char *mktempO;

Calling Syntax:

string = mktemp(string)

Arguments:

string — the address of the template string

Returns:

string — the original address argument

3-36

open, opena, openb FunctionsC Language Programmer's Guide

open, opena, openb Functions

The open and opena functions open an existing ASCII file with a file
descriptor. The openb function opens an existing binary file. You
can open a file for reading, writing, or updating. See Chapter 8.3,
"Open, Creat, Close, Unlink," in The C Programming Language for
related information.

Declarations:

char *name;
int mode;
int fd, open(), opena(), openb();

Calling Syntax:

fd = open(name, mode);
fd = opena(name, mode);
fd = openb(name, mode);

Arguments:

name — points to a null-terminated filename string
mode — type of access, can be one of three values:

0 - Read-Only
1 - Write-Only
2 - Read-Write (update)

Returns:

fd — the file descriptor to access the file or -1 if the
function fails

Note: ASCII files use a CTRL-Z to indicate the end-of-file. Binary
files do not use an end-of-file marker. Therefore, CP/M-86 cannot
directly detect the end of binary files. UNIX programs that use
open with binary files compile correctly, but might execute
improperly.

3-37

perror FunctionC Language Programmer's Guide

perror Function

The perror function writes a short message on the standard error
file that describes the last operating system error to occur. The
function prints a prefix string specified as a perror argument, then
a colon and the error message.
The system library simulates the UNIX notion of an external
variable, errno, that contains the last error to return from the
operating system.
The perror function and the errno external variable report errors
that occur during a CP/M-86 system call. The #include file ERRNO.H
contains symbolic definitions for the errors that CP/M-86 returns.
The ERRNO.H file also includes the names for all errors defined in
UNIX V7.
reference these definitions,
numbers, symbolic names, and messages available that perror can
report.

Therefore, you do not have to change programs that
The following table lists error

Table 3-4. perror Error Codes

Error MessageNumber Name

Error undefined on CP/M-86
Error undefined on CP/M-86
No such file
Error undefined on CP/M-86
Error undefined on CP/M-86
I/O error
Error undefined on CP/M-86
Arg list too long
Error undefined on CP/M-86
Bad file number
Error undefined on CP/M-86
Error undefined on CP/M-86
Not enough core
Permission denied
Error undefined on CP/M-86
Error undefined on CP/M-86
Error undefined on CP/M-86
Error undefined on CP/M-86
Error undefined on CP/M-86
Error undefined on CP/M-86
Error undefined on CP/M-86
Error undefined on CP/M-86
Invalid argument
File table overflow
Too many open files
Not a typewriter
Error undefined on CP/M-86

0
1
2 ENOENT
3
4
5 EIO
6

E2BIG7
8
9 EBADF
10
11
12 ENOMEM

EACCES13
14
15
16
17
18
19
20
21
22 EINVAL

ENFILE
EMFILE
ENOTTY

23
24
25
26

3-38

perror FunctionC Language Programmer's Guide

Table 3-4. (continued)

Error MessageNumber Name

File too big
No space left on device
Error undefined on CP/M-86
Read-Only file system
Error undefined on CP/M-86
Error undefined on CP/M-86
Error undefined on CP/M-86
Error undefined on CP/M-86
No directory space

EFBIG
ENOSPC

27
28
29
30 EROFS
31
32
33
34

ENODSPC35

Declarations:

char *s;

Calling Syntax:

perror(stg);

Arguments:

stg — points to the prefix string to print

Returns:

perror does not return a value.

certain error messages are defined in UNIX but not in CP/M-Note:
86 .

(

3-39

printf, fprintf, sprintf FunctionsC Language Programmer's Guide

printf, fprintf, sprintf Functions

The printf functions convert and format data for output. To
reference a printf function, you specify a format string and a
series of arguments to format. The format string consists of a
series of conversion specifications. The number of conversion
specifications in the format string must match the number of
arguments that follow. Each conversion specification corresponds to
one argument. The function converts and formats each argument
consecutively as listed in the function reference. See the
following page for more information on format strings.

The printf function outputs to the standard output file. The
fprintf function outputs to an arbitrary stream file. The sprintf
function outputs to a string (memory). Refer to Chapter 7.3,
"Formatted Output—Printf," and Chapter 7.6, "File Access," in The C
Programming Language for more details on these three functions.

Declarations:

ret, printf(), fprintf(), *sprintf();
‘format;
‘stream;

int
char
FILE
char ‘string;
/‘ Args can be any type */

Calling Syntax:

ret = printf (format, argl, arg2 ...);
ret = fprintf(stream, format, argl, arg2 ...);
ret = sprintfjstring, format, argl, arg2 ...);

Arguments:

format — the format string
argX
stream — points to a stream file opened for output
string — points to a string buffer

— the data arguments to format

3-40

C Language Programmer's Guide printf, fprintf, sprintf Functions

Returns:

ret — the number of characters output, or -1 if an error
occurs

Format Strings:

A percent sign, %, in the format string indicates the start of a
conversion specification. After the percent sign, you can use a
combination of reserved formatting symbols, digits strings, and
conversion characters to specify a particular format for the data.
Conversion characters operate primarily on numeric data and must
appear last in a conversion specification. If a character after the
percent sign is not a reserved formatting symbol, digit, or
conversion character, the function prints that character literally.
Table 3-5 defines the conversion characters.

Table 3-5. Output Conversion Characters

MeaningOperator

Converts a binary number to
decimal ASCII and inserts in
output stream.
Converts a binary number to octal
ASCII and inserts in output
stream.

d

o

Converts a binary number to
hexadecimal ASCII and inserts in
output stream.

x

Uses the argument as a single
ASCII character.

c

Uses the argument as a pointer to
a null-terminated ASCII string,
and inserts the string into the
output stream.
Converts an unsigned binary number
to decimal ASCII and inserts in
output stream.

s

u

Prints a % character.%

3-41

printf, fprintf, sprintf FunctionsC Language Programmer's Guide

Table 3-5. (continued)

MeaningOperator

Converts a float or double number
to ASCII decimal and inserts in
output stream,
string controls the number of
decimal places,
digits to the right of the
decimal point.
Same as f, except number converts
to scientific notation.

f

The precision

Default is six

e

Converts float or double numbers
using the d, f, or e conversion
character depending on which
yields the full precision with a
minimum number of characters.
The input value must be float or
double.

9

You can use the following reserved formatting symbols and digit
strings between the percent sign and a conversion character.
Remember, the conversion character must appear last in a conversion
specification.

• A minus sign, -, justifies the converted output to the left,
instead of the default right justification.

•A digit string specifies a field width. This value gives the
minimum width of the output field. If the digit string begins
with a 0 character, zero padding results instead of blank
padding. An asterisk, *, takes the value of the width field as
the next argument in the argument list.

separates the field width from the precision•A period,
string.

• A digit string that follows a period specifies the precision
for floating-point conversion. The precision is the number of
digits that follow the decimal point. An asterisk tells the
function to use the value of the precision field from the next
argument in the argument list.

•The character L or 1 specifies a 32-bit long value,
example, in a small model, where a pointer is 16 bits, you
would say printf("%4x",p); but in a big model, where a pointer
is 32 bits, you would say printf("%81x",p);

• f

For

3-42

putc, putchar, fputc, putw, putlC Language Programmer's Guide

putc, putchar, fputc, putw, putl Functions

The putc, putchar, fputc, putw, and putl functions output characters
and words to stream files.
The putc function outputs a single 8-bit character to a stream file.
This function is implemented as a macro in STDIO.H. Therefore, do
not use arguments that involve side effects,
functions that are implemented as macros. The fputc function is
equivalent to putc. However, fputc is not implemented as a macro.

The putchar function outputs a character to the standard output
stream file. This function is also implemented as a macro in
STDIO.H. Avoid using functions that involve side effects with
putchar. The C Programming Language, Chapter 7.6, "File Access,"
has related information on putc, and Chapter 7.2, "Standard Input
and Output—Gerchar and Putchar," has related information on
putchar.
The putw function outputs a 16-bit word to a specified stream file.
The word is output high-order byte first and is compatible with the
write function call.

Do not declare

i

The putl function outputs a 32-bit longword to a specified stream
file. The bytes are output in 8086 order like the write function
call.

Declarations:

char charac;
FILE
int
long lret, putl(), lng;

*stream;
ret, fputc(), wrd, putw();

Calling Syntax:

= putc(charac, stream);
= fputc(charac, stream);
= putchar(charac);
= putw(wrd, stream);

ret
ret
ret
ret
lret = putl(lng, stream);

Arguments:

charac — the character to output
stream — points to the output stream file
wrd
lng — the word to output— the long to output

3-43 I

putc, putchar, fputc, putw, putlC Language Programmer's Guide

Returns:

the word or character output, -1 indicates an output
error

ret

lret — the long output with putl, -1 indicates an output error

a -1 return from putw or putl is a valid integer or long
Use ferror to detect write errors.

Note:
value.

3-44

puts, fputs FunctionsC Language Programmer's Guide

puts, fputs Functions

The puts and fputs functions output a null-terminated string to an
output stream. Neither routine copies the trailing null to the
output stream.

The puts function outputs a null-terminated string to the standard
output, and appends a newline character.
The fputs function outputs the string to a specified output
The fputs function does not append a newline character.
7.8, "Line Input and Output," in The C Programming Language has
related information on fputs.

stream.
Chapter

Declarations:

int ret, puts(), fputs();
char *stg;
FILE‘stream;

Calling Syntax:

ret = puts(stg);
ret = fputs(stg, stream);

Arguments:

— the string to be outputstg
stream — the output stream

Returns:

ret — the last character output or -1 if an error occurs

the difference between puts and fputs is required forNote:
compatibility with UNIX.

3-45

qsort FunctionC Language Programmer's Guide

qsort Function

You supply a vector of
The

The qsort function is a quick sort routine.
elements and a comparison function that compares two elements,
qsort function sorts the elements in the vector according to your
comparison function.
A vector is a series of elements specified by a base address, the
number of elements in the vector, and the size of each element in
bytes. A call to the comparison function that you write must use
the following format:

return = compare(a,b);

Your comparison function must return values according to the
following criteria:

if a < b
if a = b
if a > b

return value is < 0
return value is = 0
return value is > 0

Declarations:

int ret, qsort();
char *base;
int number;
int size;
int compare();

Calling Syntax:

ret = qsort(base, number, size, compare);

Arguments:

the base address of the element vector
the number of elements to sort

base
number
size
compare — the address of the user written comparison function— size of each element in bytes

Returns:

ret — qsort always returns a value of 0.

3-46

rand, srand FunctionsC Language Programmer's Guide

rand, srand Functions

The rand and srand functions constitute the C language random number
generator. Call srand with the seed to initialize the generator.
Call rand to retrieve random numbers. The random numbers are C int
quantities.

Declarations:

int srand(), seed?
int rnum, rand();

Calling Syntax:

rnum = srand(seed);
rnum = rand();

Arguments:

seed an int random number seed

Returns:

a random int numberrnum

3-47

C Language Programmer's Guide read Function

read Function

rThe read function reads data from a file opened with a file
descriptor using open or creat. You can read any number of bytes,
starting at the current file pointer.
Under CP/M-86, the most efficient reads begin and end on 128-byte
boundaries.
See Chapter 8.2, "Low Level I/0--Read and Write," in The C
Programming Language for related information.

Declarations:

int ret, read();
int fd;
char *buffer;
unsigned bytes;

Calling Syntax:

ret = read(fd, buffer, bytes);

Arguments:

fd — a file descriptor open for read— the buffer addressbuffer
bytes — the number of bytes to be read

Returns:

ret — number of bytes actually read, or -1 if an error occurs

3-48

scanf, fscanf, sscanf FunctionsC Language Programmer's Guide

scanf, fscanf, sscanf Functions

The scanf functions convert data for input. The functions read
characters from an input source, convert them according to a format
string, and store them in specified arguments. Arguments must be
pointers. The functions continue to read characters until the input
field width is exhausted.
To reference a scanf function, you specify the format string and a
series of arguments. The format string consists of a series of
conversion specifications. The number of conversion specifications
in the format string must match the number of arguments that follow.
Each conversion specification corresponds to one argument. See
below for more information on format strings.
The scanf function reads from the standard input, fscanf reads from
an open stream file, and sscanf reads from a null-terminated string.
Refer to Chapter 7.4, "Formatted Input—Scanf," in The C Programming
Language for related information.

Declarations:

char *format, *string;
int nitems, scanf(), fscanf(), sscanf();
FILE *stream;
/* args can be pointers of any type */

Calling Syntax:

nitems = scanf(format, argl, arg2 ...);
nitems = fscanf(stream, format, argl, arg2 ...);
nitems = sscanf(string, format, argl, arg2 ...);

Arguments;

format — the control string
argX
stream — a stream file opened for input
string — null-terminated input string

— pointers to locations to store converted data

Returns;

— the number of items converted, or -1 if an I/O error
occurs

nitems

3-49 i

C Language Programmer's Guide scanf, fscanf, sscanf Functions

Format String:

Format strings for scanf functions consist of the following items:

•Blanks, tabs, or newlines (line-feeds) that match optional
white space in the input data.

•An ASCII character (not %) that matches the next character of
the input stream.

•Conversion specifications, consisting of a leading percent
sign, %, an optional asterisk, *, and a conversion character.
The asterisk tells the function to suppress assignment of the
data and skip to the next one. Conversion characters indicate
the interpretation of the input field. Table 3-6 defines valid
conversion characters.

Table 3-6. Input Conversion Characters

MeaningCharacter

A single percent sign, %, matches
in the input at this point; no
conversion is performed.
Converts a decimal ASCII integer
and stores it where the next
argument points.
Converts an octal ASCII integer
and stores it where the next
argument points.
Converts a hexadecimal ASCII
integer and stores it where the
next argument points. Can also
be used to input a pointer value.
Use one %x for small model and
two for big model to input both
the offset and segment values.

%

d

o

X

A character string, ending with a
space, is input,
pointer is assumed to point to a
character array big enough to
contain the string and a trailing
null character, which are added.
Stores a single ASCII character,
including spaces,
next nonblank character, use %ls.

s
The argument

c
To find the

3-50

C Language Programmer's Guide scanf, fscanf, sscanf Functions

Table 3-6. (continued)

Character Meaning

h Converts a short integer,
corresponding argument must be a
pointer to a short integer.

The

e or f Converts a string to floating-point binary. The corresponding
argument should be double.

I

I] Indicates a string that is not
delimited with spaces,
specified character string must
be enclosed in the brackets. If
the first character after the
left bracket is not ", the string
is read up to the first character
outside the right bracket,
the first character after the
left bracket is ", the string is
read up to the first character
that is in the set of charcters
that remains between the
brackets.

The

If

3-51

setbuf FunctionC Language Programmer's Guide

setbuf Function

The setbuf function assigns buffering to an input/output stream.
Use setbuf after the stream has been opened but before it is read or
written.
By using setbuf, you can specify a character array for a buffer in
place of the automatically allocated buffer. If you specify the
constant pointer NULL, input/output will be completely unbuffered.

Declarations:

int
FILE
char

setbuf();
stream;
buffer;

Calling Syntax:

ret = setbuf(stream, buffer);

Arguments:

stream — a pointer to a stream file
buffer — character array to serve a buffer

Returns:

0 if the function is successful and -1 if it failsret

3-52

setjmp, longjmp FunctionsC Language Programmer's Guide

setjmp, longjmp Functions

The setjmp and longjmp functions enable a program to execute a
nonlocal GOTO. Use the setjmp function to save the program
environment at a specific point in the flow of execution and to
specify a return location for the longjmp call. You can then call
longjmp from any point after the setjmp call.
The longjmp function simulates a return from a call to setjmp.
First, longjmp returns a value to setjmp as specified in the second
argument in the longjmp call. Secondly, execution continues at the
instruction immediately following the setjmp call in the program.
If the function that invokes setjmp returns, the saved environment
becomes invalid and longjmp cannot be used with it. The setjmp
function saves the program environment in a variable of type
jmp_buf. The type jmp_buf is defined in the include file setjmp.h.

Declarations:

#include <setjmp.h>
int xret, ret, setjmpO;
jmp_buf env;

Calling Syntax:

xret = setjmp(env);

longjmp(env, ret);

Arguments:

env — contains the saved environment
ret — the desired return value from setjmp

Returns:

xret — 0 when setjmp is called initially, then copied from ret
when longjmp is called

3-53

sqrt FunctionC Language Programmer's Guide

sqrt Function

The sqrt function returns the square root of a double-precision
floating-point number.

Declarations:

double sqrt();
double val;
double ret;

Calling Syntax:

ret = sqrt(val);

Arguments:

val — a double-precision floating-point number

Returns:

the square root of the specified double-precision
floating-point number

ret

you can pass numbers declared as either float or double to
If you pass a float, C will automatically convert it to a

Note:
sqrt.
double.

3-54

strcat, strncat FunctionsC Language Programmer's Guide

strcat, strncat Functions

The strcat and strncat functions concatenate strings.
The strcat function concatenates two null-terminated strings,
strncat function concatenates a null-terminated string and a
specified maximum number of characters from a second string.
See Chapter 2.8, "Increment and Decrement Operators," in The C
Programming Language for related information on the strcat function.

The

Declarations:

char *stgl, *stg2, *ret;
char *strcat(), *strncat();
int max;

Calling Syntax;

ret = strcat(stgl, stg2);
ret = strncat(stgl, stg2, max);

Arguments;

stgl — the first string
stg2 — the second string, (appended to stgl)
max — the maximum number of characters from stg2 to append to

stgl

Returns:

ret — points to the first string appended to the second

Note: if you use strcat(stgl,stgl), the function does not terminate
and usually destroys the operating system. The end-of-string marker
becomes lost.
memory, including memory the operating system occupies.Therefore, strcat continues until it runs out of

3-55

strcmp, strncmp FunctionsC Language Programmer's Guide

strcmp, strncmp Functions

The strcmp and strncmp functions compare strings.

The strcmp function compares two null-terminated strings, strncmp
limits the comparison to a specified number of characters in each
string.
See Chapter 5.5, "Character Pointers and Functions," in The C
Programming Language for related information on the strcmp function.

Declarations:

char
int

*stgl, *stg2;
val, strcmpO, strncmpO , max;

Calling Syntax:

val = strcmp(stgl, stg2);
val = strncmp(stgl, stg2, max);

Arguments;

stgl — a null-terminated string address
stg2 — a null-terminated string address
max — the maximum number of characters to compare

Returns:

the number of characters:val

< 0 if stgl < stg2
= 0 if stgl = stg2
> 0 if stgl > stg2

different machines and compilers might interpret theNote:
characters as signed or unsigned.

3-56

strcpy, strncpy FunctionsC Language Programmer's Guide

strcpy, strncpy Functions

The strcpy and strncpy functions copy one null-terminated string to
another.
The strcpy function stops copying the source string after the null
character is copied. strncpy specifies a maximum number of
characters to copy. strncpy truncates or null-pads the source
string depending on the specified number of characters to copy.
See Chapter 5.5, "Character Pointers and Functions,"
Programming Language for related information on the strcpy function.

in The C

Declarations:

char *stgl, *stg2, *ret;
char *strcpy(), *strncpy();
int n;

Calling Syntax:

ret = strcpy(stgl, stg2);
ret = strncpy(stgl, stg2, max);

Arguments:

stgl — the destination string
stg2 — the source string
max — the exact number of characters to copy from the source

string

Returns:

ret — points to the first string

if the source string exceeds the specified number ofNote:
characters to copy, the destination string is not null-terminated.

3-57

strlen FunctionC Language Programmer's Guide

strlen Function

The strlen function returns the length of a null-terminated string.
See Chapter 2.3, "Constants," and 5.3, "Pointers and Arrays," in The
C Programming Language for additional information.

Declarations:

char *stg;
int len, strlen();

Calling Syntax:

len = strlen(stg);

Arguments:

stg — points to a string

Returns: f
len — the string length

r

3-58

swab FunctionC Language Programmer's Guide

swab Function

The swab function copies one area of memory to another. The high
and low bytes in the destination copy are reversed. The number of
bytes to swap must be an even number. See Chapter 5.2, Pointers and
Function Arguments," in The C Programming Language for related
information.

-1

Declarations:

int
char
int

ret, swab();
*from, *to;
nbytes;

Calling Syntax:

ret = swab(from, to, nbytes);

Arguments;

the address of the source buffer
the address of the destination

nbytes — the number of bytes to copy

from
to

Returns:

ret — swab always returns 0

3-59

tan, atan FunctionsC Language Programmer's Guide

tan, atan Functions

The tan function returns the trigonometric tangent of a double-
precision floating-point number,
trigonometric arctangent of a double-precision floating-point
number.

The atan function returns the

You must express all arguments in radians.

Declarations:

double val;
double ret;
double tan();
double atan();

Calling Syntax:

ret = tan(val);
ret = atan(val);

Arguments:

— a double-precision floating-point number that expresses
an angle in radians

val

Returns:

ret — the tan or arctangent expressed in radians of the
argument value

you can pass numbers declared as either float or double to
If you pass a float, C will automatically convert it

Note:
tan and atan.
to a double.

3-60

toascii, tolower, toupperC Language Programmer's Guide

toascii, tolower, toupper Functions

The toascii, tolower, and toupper functions are character conversion
functions implemented as macros in the include file CTYPE.H. You
must include CTYPE.H in any program that uses any of these three
functions. Do not declare functions that are implemented as macros.
Arguments that involve side effects might work incorrectly and
should be avoided.
The tolower function converts an uppercase letter to the
corresponding lowercase letter. The toupper function converts a
lowercase letter to the corresponding uppercase letter..The toascii
function simply turns off all bits in a character representation
that are not part of a standard ASCII character,
provided for compatibility with other systems.

toascii is

Declarations:

#include <ctype.h>
int ret;

Calling Syntax:

ret = tolower(c’narac);
ret = toupper(charac);
ret = toascii(charac);

Arguments:

charac — a single character to convert

Returns:

the converted characterret

tolower and toupper can accept character argumentsNote:
represented by integers in the range 0 to 2S5.

3-61

ttyname FunctionC Language Programmer's Guide

ttyname Function

The ttyname function returns a pointer to the null-terminated
filename of the console device associated with an open file
descriptor.

Declarations:

char *name, *ttyname();
int fd;

Calling Syntax:

name = ttyname(fd);

Arguments:

fd — an open file descriptor

Returns:

— If the file descriptor is open and attached to the
CP/M-86 console device, the function returns a pointer
to the null-terminated string CON:. Otherwise, the
function returns a NULL character.

name

r

3-62

ungetc FunctionC Language Programmer's Guide

ungetc Function

The ungetc function pushes a character back to an input stream. The
next getc, getw, or getchar operation incorporates the character.
One character of buffering is guaranteed if something has been read
from the stream. The fseek function erases any pushed back
characters. You cannot use ungetc with EOF (-1). See Chapter 7.9,
"Some Miscellaneous Functions," in The C Programming Language for
related information.

Declarations:

char charac;
FILE *stream;
int ret, ungetc();

1

Calling Syntax:

ret = ungetc(charac, stream);

Arguments:

charac — the character to push back
stream the stream address

Returns:

ret — If the character is successfully pushed back, the
function returns charac.
function returns -1.

If an error occurs, the

J

3-63

C Language Programmer's Guide unlink Function

unlink Function

The unlink function deletes a named file from the file system. The
function fails if the file is open or nonexistent. See Chapter 8.3,
"Open, Creat, Close, Unlink," in The C Programming Language for
related information.

Declarations:

int ret, unlink();
char *name;

Calling Syntax:

ret = unlink(name);

Arguments:

name — points to a null-terminated filename

fReturns:

— 0 if the function succeeds, or -1 if the function failsret

3-64

write FunctionC Language Programmer's Guide

write Function

The write function transfers data to a file opened with a file
descriptor. Transfer begins at the present file pointer, as set by
previous transfers or by the lseek function. You can write any
arbitrary number of bytes to the file. The number of bytes actually
written returns. If the number of bytes written does not match the

number requested, an error has occurred.

Under CP/M-86, the most efficient writes begin and end on 128-byte
boundaries.
See Chapter 8.2, "Low Level I/O—Read and Write," in The C
Programming Language for related information.

Declarations:

int ret, write();
int fd;
char *buffer;
unsigned bytes;

Calling Syntax:

ret = write(fd, buffer, bytes);

Arguments:

— the open file descriptor
buffer — the starting buffer address
bytes — the number of bytes to write

fd

Returns:

the number of bytes actually written, or -1 if an error
occurs

ret

due to the buffering scheme used, some data might not beNote:
written to the file until the file is closed.

End of Section 3

3-65

Section 4
Input/Output Conventions

In C, all input and output is done by reading and writing files.
Even peripheral devices such as your terminal are treated as files
in a C program. A C program can access files in two different ways:
as a regular file or as a stream file,
input/output files called the standard I/O files that simplify
input/output to your terminal and other common I/O sources.
The C Programming Language does not use the terms regular and
stream. However, the manual provides complete descriptions of both
types of file access. In this section, we refer to the appropriate
chapters in The C Programming Language that contain additional
information.

C provides three

4.1 Regular File Access

Regular file access is considered low-level I/O because it provides
no added services, such as data buffering. Regular access is a
direct entry into the operating system. See Chapter 8.2, "Low Level
I/O—Read and Write," in The C Programming Language for more
information on low-level I/O.
To create a disk file for regular access, use the creat, creata, and
creatb functions. All three functions return a unique number called
a file descriptor. The file descriptor is a positive short integer
used to identify the file in a C program. Under CP/M-86, the file
descriptor can range from 0 to 15. Refer to Chapter 8.1, "File
Descriptors," in The C Programming Language for more information on
file descriptors.
Use creat and creata to create ASCII files and creatb to create
binary files. CP/M-86 stores ASCII files with a carriage return and
line-feed at the end of each line and a CTRL-Z character (Oxla) at
the end-of-file. However, C programs under UNIX normally end lines
with only a line-feed and do not mark the end-of-file. This means
that for C programs under CP/M-86 to be compatible with C programs
under UNIX the read and write functions for ASCII files respectively
delete and insert carriage return characters,
functions for ASCII files delete the terminating CTRL-Z, and the
close functions for ASCII files insert the CTRL-Z at the end-of-
file. For binary files under CP/M-86, there is no automatic way to
detect or mark the end-of-file. The program must keep track of the
end-of-file position.
Use the open, opena, and openb functions to open existing files for
regular access. All three functions return a file descriptor. You
cannot use these functions to create new files.

Also, the read

!

)

4-1

C Language Programmer's Guide 4.1 Regular File Access

The following list contains all the system library functions you can
use for regular file access.

Functions for Regular File Access

tell
unlink
write

creatb
lseek
open

close
creat
creata

opena
openb
read

4.2 Stream File Access

Unlike regular file access, stream file access employs a form of
local buffering, making single-byte I/O more efficient. Stream file
access uses a 512-byte buffer, which corresponds to a physical
blocksize on many peripheral devices.

A stream is identified by a pointer to a data control structure that
contains all the information relevant to the stream. Refer to
Chapter 7.6, "File Access," in The C Programming Language for
additional information.

The following list contains all the system library functions you can
use for stream file access. The page number refers to the function
descriptions in Section 3.

Functions for Stream File Access

fscanf
fseek
ftell
fwrite
getc
getchar
getl
gets
getw

printf
putc
putchar
putl
puts
putw
rewind
scanf
ungetc

fopena
fopenb
fprintf
fputc
fputs
fread
freopen
freopena
freopenb

fclose
fdopen
feof
ferror
fflush
fgetc
fgets
fileno
fopen

4-2

4.3 Peripheral DevicesC Language Programmer ’s Guide

4.3 Peripheral Devices

Peripheral devices, such as your terminal or printer, are treated as
files in C. Like UNIX, peripheral devices under CP/M-86 use special
names for identification in a program.

•CON: stands for a console device.
•LST: stands for a listing device.

4.4 Standard I/O Files

C provides three files that simplify I/O procedures from common
sources, such as your terminal. The three files are the standard
input, standard output, and standard error files. You can access
these files as either regular or stream files. A C program begins
execution with all three files open and initially connected to your
terminal.
having to open files explicitly,
indicate a source other than the terminal and redirect I/O with the
< and > characters.

Therefore, a program can handle terminal I/O without
As described below, you can

The standard I/O uses routines from the system library, CLEAR. The
file STDIO.H contains certain macro definitions and variables used
by the system library routines for opening, closing, reading, and
writing the standard I/O files. You must include STDIO.H in any
source program that references a system library function. Remember,
STDIO.H already includes the portability file PORTAB.H. Table 4-1
shows the definitions in STDIO.H for the standard I/O files. You
can list STDIO.H to examine the entire file.

Table 4-1. Standard I/O File Definitions

File DescriptorFile Stream Name

stdin
stdout
stderr

standard input
standard output
standard error

0
1
2

You can redirect the flow of standard input and output from a
command line using the < and > characters. Specify a filename or
device after the < character to indicate an input source other than
the terminal. The following example executes a file named PROG.CMD,
with the standard input coming from a different file named INDAT.

prog cindat

4-3

4.4 Standard I/O FilesC Language Programmer's Guide

Specify a filename or device after the > character to indicate an
output destination other than the terminal. The following example
executes a file named PROG.CMD with standard input coming from a
different file named INDAT and standard output going to the list
device:

prog <indat >lst:

Refer to The C Programming Language for more information on I/O
redirection.

End of Section 4

4-4

Section 5
Assembler Routine Interfacing

RASM-86 is an 8086/8088 relocatable assembler that uses a compatible
subset of the ASM-86” assembly language,
write assembly language programs that interface with C modules.
RASM-86 generates relocatable object files compatible for linking
with LINK-86,
complete explanations of RASM-86 and LINK-86.
This section defines the conventions and guidelines you must observe
to properly interface C functions with assembly language routines.
Section 5.4 presents a RASM-86 routine to assemble and a sample C
module that you can link with the routine,
presented in this section is for the experienced assembly language
programmer.

You can use RASM-86 to

Refer to your Programmer's Utilities Guide for

The information

5.1 External Naming Conventions

Names for external functions and varibles are significant up to
eight characters in Digital Research C, although you can use many
more characters. The number of significant characters in external
names varies for different compilers. For example, UNIX C compilers
place an underscore character at the beginning of all external
names, effectively making the names significant to seven characters
only. For portability considerations, it is preferable to limit all
external names to seven significant characters.
Digital Research C does not prefix an underscore on external names.
However, certain routines in the system library have one or two
underscores preceding the function name. You must not attempt to
reference these routines directly with the exception of _exit. They
are designed for access internally by other functions in the
library.
RASM-86 converts all characters to uppercase unless you use the
RASM-86 $nc switch. However, the C compiler distinguishes between
uppercase and lowercase. Therefore, you must use all uppercase
characters to specify assembler function names and to declare
assembly routine variables in your C source code. The following
examples show some proper and improper external names:

Proper function name. C compiler recognizes
the name as ASM ROUT.

ASM_ROUTINE()
asm routine() Improper function name. RASM-86 converts the

name to uppercase unless you use the RASM-86
$nc switch.

5-1

5.1 External Naming ConventionsC Language Programmer's Guide

Proper variable name. C compiler truncates
the name to CALCVALU.

int CALCVALUE?

C compiler truncatesProper variable name,
the name to CALC VAL.

int CALC VALUE;

Improper variable name. RASM-86 converts the
name to uppercase unless you use the RASM-86
$nc switch.

int calc val;

5.2 Calling an Assembly Routine from a C Module

Three steps are required to call an assembly language routine from a
C module:

1) Declare the function names external in the C source code
using the C language extern declaration. Refer to Chapter
1.10, "Scope: External Variables," in The C Programming
Language for more information on C external declarations.

Remember, RASM-86 converts all characters to uppercase
unless you use the RASM-86 $nc switch. Therefore, function
names declared in the C program must be in uppercase if you

For example, the following Cdo not use the switch,
declarations specify FUNC_1, FUNC__2, and FUNC_3 as external
functions:

int
int
long

FUNC_1();
FUNC_2()?
FUNC_3();

extern
extern
extern

2) Declare the function names PUBLIC in the assembly routine
using the RASM-86 PUBLIC directive. Refer to Section 3.7
in the Programmer's Utilities Guide for information on the
PUBLIC directive.

FUNC_1
FUNC_2
FUNC 3

PUBLIC
PUBLIC
PUBLIC

reference the assembly routines from the C module.3) Call or

5-2

C Language Programmer ’s Guide 5.3 Calling a C Module

5.3 Calling a C Module from an Assembly Routine

Two steps are required to call a C function from an assembly
routine:

1) Declare the C function names external in the assembly
Refer toroutine using the RASM-86 EXTRN directive.

Section 3.8 in the Programmer's Utilities Guide for
information on the EXTRN directive. The following RASM-86
directive statements specify FUNC_1, FUNC_2, and FUNC_3 as
external:

FUNC_1:NEAR
FUNC_2:NEAR
FUNC 3:NEAR

EXTRN
EXTRN
EXTRN

Notice that the functions are labeled NEAR in the preceding
EXTRN directives. You must use the NEAR label for modules
designed according to the 8086 small memory model. For
modules designed according to the big memory model, you
must use the FAR label.

2) Call the C functions from the assembly routine. Notice that
you do not have to explicitly declare the C functions as
public in the C code.

5.4 Argument Passing

The following conventions apply to the passing of arguments in C:

•C functions pass arguments on the hardware stack.

•The compiler places each argument on the stack reading from
right to left.

• All arguments pass by value.

• Arguments that evaluate to one byte pass as a word value with
the low-order byte of the word containing the one-byte value.

•Multiword values such as long integers, floats, and doubles,
pass with the high-order words pushed before the low-order
words.

•The called assembly routine must save and restore the contents
of the SI and DI registers if the routine uses those registers.

5-3

5.4 Argument PassingC Language Programmer ’s Guide

• Under the small memory model, a pointer is a word that contains
an offset value. Under the big memory model, a pointer is a
double word that contains an offset value in the low-order word
and a segment number in the high-order word. When a big model
pointer is passed as an argument, the high-order word is pushed
first.

•Calls to assembly functions under the big model use far calls
and returns. Calls to assembly functions under the small model
use near calls and returns.

When a C program calls a C function or an assembly routine, the
compiler generates a standard entry/exit protocol that performs
necessary manipulation of register contents,
protocol is shown below:

The extry/exit

;start of entry protocol
;save old frame pointer
?set up new frame pointer
;save register variables in DI and SI

SP,nnn ;allocate any necessary local variables
;end of entry protocol

FUNCTION:
PUSH BP

BP,SPMOV
PUSH
PUSH

DI
SI

SUB

. (the called function body)

;start of exit protocol
;reset stack pointer for pop
;restore register variables

SP,-4[BP]LEA
SIPOP

POP DI
yrestore frame pointer
;use RETF for big model

POP BP
RET

5-2 show the stack upon entry to a hypothetical
Figure 5-1 shows the

Figure 5-2 shows the stack for
TESTFUNC has six parameters to pass as shown

Figures 5-1 and
assembly language function named TESTFUNC.
stack for the small memory model,
the big model,
below:

TESTFUNC(var_a, var_b, var_c, var_d, var_e, "greetings")

The variables var_a through var__e have the following type
definitions:

int var_a;
long var_b;
char var_c?
float var_d?
double var_e;

5-4

C Language Programmer's Guide 5.4 Argument Passing

OFFSET FROM
REGISTER BPSTACK

+0CALLER BP
RETURN ADDRESS
VAR.A WORD VALUE
VAR_B LOW WORD
VAR_B HIGH WORD
VAR_C WORD VALUE
VAR_D WORD 0 (LOW)
VAR_D WORD 1
VAR_D WORD 2
VAR_D WORD 3 (HIGH)
VAR_E WORD 0 (LOW)
VAR_E WORD 1
VAR_E WORD 2
VAR_E WORD 3 (HIGH)
POINTER TO "greetings”

+2
+4
*6
^8
+10
+12
+14
+16
+18
+20
+22
+24
+26
+28

Figure 5-1. Stack for Small Model

OFFSET FROM
REGISTER BPSTACK

+0CALLER BP
RETURN ADDRESS LOW WORD
RETURN ADDRESS HIGH WORD
VAR_A WORD VALUE
\PAR _B LOW WORD
VAR_B HIGH WORD
VAR_C WORD VALUE
VAR_D WORD 0 (LOW)
VAR_D WORD 1
VAR_D WORD 2
VAR_D WORD 3 (HIGH)
VAR_E WORD 0 (LOW)
VAR_E WORD 1
VAR_E WORD 2
VAR_E WORD 3 (HIGH)
POINTER TO "greetings”

+2
+4
+6
+8
+10
+12
+14
+16
+18
+20
+22
+24
+26
+28
+30

Figure 5-2. Stack for Big Model

The compiler statically allocates space for the string constant
"greetings", and passes a pointer to this static location as
indicated in Figures 5-1 and 5-2. Note that floats always convert
to double before being passed as arguments.

5-5

5.4 Argument PassingC Language Programmer's Guide

Remember, under the small model, a pointer is a word value. The
value is an offset from the data segment base address. Under the
big model, a pointer is a double word value. The high-order word is
the segment base address. The low-order word is an offset from the
segment base address.
Unlike most languages implemented for the 8086/8088, the calling C
routine removes the arguments from the stack after returning from
the called routine. The compiler generates an ADD SP,<nnn>
instruction in the C program immediately following the call to the
assembly routine. The <nnn> stands for the number of bytes pushed
onto the stack. The instruction modifies the stack pointer,
effectively removing the arguments. If you call a C routine from an
assembly routine, you must modify the stack pointer explicitly in
the assembly routine to remove the arguments.

5.5 Function Return Values

The values that a function returns are passed back to the calling
program in certain registers.
contain the return values for each C data type.

Table 5-1 shows which registers

Table 5-1. Function Return Registers

RegistersData Type

int, char, short,
pointer (small model)

AX

High word in BX (segment for pointer)long, float,
pointer (big model)

Low word in AX (offset for pointer)

High word in DX
High middle word in CX
Low middle word in BX
Low word in AX

double

5.6 Accessing External Data

The C compiler places each C program variable declared explicitly or
implicitly external into a data segment with the common attribute.
To access external variables from an assembly module, or to define
such variables in an assembly module for access from a C module, you
must define each variable as a separate common data segment in the
assembly module.
segment name in the assembly module,
names in an assembly routine.
variable names and allocate space for each one.
required to access external data.

Consequently, the variable name becomes the
You cannot reference segment

Therefore, you must assign new
Three steps are

5-6

5.6 Accessing External DataC Language Programmer's Guide

1) Declare the variables that the C program is to share with
the assembly routine as external variables in the C source
program.
language function call from a C program,

ret = NEXTFUNC(VAR 1, VAR 2, VAR 3, VAR 4, VAR 5)

For example, consider a hypothetical assembly

NEXTFUNC and its five parameters must be declared external
in the calling C program. Remember, RASM-86 converts all
characters to uppercase unless you use the RASM-86 $nc
switch.

float NEXTFUNC()?extern

int VAR_1?
long VAR__2?
char VAR_3;
float VAR_4?
double VAR_5;

extern
extern
extern
extern
extern

2) Declare TESTFUNC as PUBLIC in the assembly routine. Then
declare each parameter as a separate data segment within
the assembly routine.
PUBLIC in the assembly routine. You must declare each data
segment with a RASM-86 COMMON combine type.
Section 3.2.3 in the Programmer's Utilities Guide for more
information on combine types.
Once the variable names are declared as segments, you can
not reference them as local variables in the assembly
routine. Therefore, if you plan to reference the variables
as local in the routine, you must assign different names
for proper access. Also, you must allocate storage for the
variables using the appropriate RASM-86 allocation
directives.
Programmer's Utilities Guide for information on allocation
directives.

You cannot declare the variables

Refer to

Refer to Sections 3.14 through 3.17 in the

PUBLIC TESTFUNC

COMMONVAR_1
VAR ONE

DSEG
RW 1

COMMONVAR_2
VAR TWO

DSEG
RW 2

COMMONVAR_3
VAR THREE

DSEG
RB 1

DSEG
RW 2

COMMONVAR_4
VAR FOUR

5-7

5.6 Accessing External DataC Language Programmer's Guide

VAR_5
VAR FIVE

DSEG COMMON
RW 4

3) Group all the COMMON data segments together into the data
group (dgroup) using the RASM-86 GROUP directive. Refer to
Section 3.3 in the Programmer's Utilities Guide for more
information on the GROUP directive.

DGROUP GROUP DATA, VAR.l, VAR.2, VAR.3, VAR.4, VAR.5

End of Section 5

/

5-8

Section 6
Internal Data Representation

There are four fundamental data types in the C language:

•character
• integer
•single-precision floating-point
•double-precision floating-point

This section describes the internal data representation that Digital
Research C uses for each type.

6.1 Character Storage

C stores a character value as a single, 8-bit, unsigned binary
number, as shown in Figure 6-1.
positive integers ranging from 0 to 255.
keyword char to declare character data.

Character values are always
Use the declaration

1f
x x x x x x x x
7 6 5 4 3 2 1 0BITS

Figure 6-1. Character Storage

6-1

C Language Programmer’s Guide 6.2 Integer Storage

6.2 Integer Storage

There are two different sizes for integers:, short and long. Short
integers can be either signed or unsigned. C stores a short signed
integer value as a 16-bit, two's complement binary number. Short
signed integers range from -32768 to +32767, inclusive. You can use
the keywords int or short to declare short signed integers. Use the
keyword unsigned with int to declare unsigned short integers.
Unsigned integers range from 0 to 65535. Figure 6-2 shows the
storage format for short integers.

HIGH MEMORY LOW MEMORY-
HIGH ORDER

BYTE Ilr l r I
x x x x x x x x x x x x x x x x

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 6-2. Short Integer Storage

C stores a long integer as a 32-bit, two's complement binary number,
as shown in Figure 6-3. Long integers are always signed numbers
ranging from -2147483648 to +2147483647. Use the keyword long to
declare long integers. C does not implement unsigned long integers.

HIGH MEMORY LOW MEMORY

BYTE 3 BYTE 2 BYTE 1 BYTEO
I

1 1Ir
x x

16 1524 23 8 7 031

Figure 6-3. Long Integer Storage

/-

6-2

6.3 Single-precisionC Language Programmer's Guide

6.3 Single-precision Floating-point

C stores a single-precision floating-point number in four
consecutive bytes using the IEEE format. The 32-bits contain three
fields as shown in Figure 6-4: a sign bit, an 8-bit biased
exponent, and a 23-bit mantissa with a 24th implicit normalized bit.

The normalized bit is always 1 for nonzero numbers. The bit is
recognized implicitly and is not stored. The binary point is
situated to the immediate right of the implicit normalized bit. The
exponent has a bias of 7F hexadecimal (127 decimal). Therefore, the
hexadecimal number 80 represents an exponent of +1. The hexadecimal
number 7E represents an exponent of -1. The mantissa is precise to
7 decimal digits. Single-precision floating-point numbers range
from 1.18 times 10 to the minus 38th power up to 3.40 times 10 to
the 38th power (1.18*10**-38 <=|x| <=3.40*10**38).

LOW MEMORYHIGH MEMORY

BYTE 2 BYTE1 BYTE 0BYTE 3
1 1 1 1r i r l r

x x
31 30 023 22

J LI
T

BIASED
EXPONENT MANTISSA

SIGN
BIT

Figure 6-4. Single-precision Floating-point Storage

6.4 Double-precision Floating-point

C stores a double-precision floating-point number in eight
consecutive bytes using the IEEE format. The 64-bits contain three
fields: a sign bit, an 11-bit biased exponent, and a 52-bit
mantissa with a 53rd implicit normalized bit.

The normalized bit is always 1 for nonzero numbers. The bit is
recognized implicitly and is not stored. The binary point is
situated to the immediate left of the implicit normalized bit.

6-3

C Language Programmer's Guide 6.4 Double-precision
The exponent has a bias of 3FF hexadecimal (1023 decimal).
Therefore, the hexadecimal number 400 represents an exponent of +1.
The hexadecimal number 3FE represents an exponent of -1.
mantissa is precise to 15 decimal digits. Double-precision
floating-point numbers range from 9.46 times 10 to the minus 308th
power up to 1.80 times 10 to the 308th power (9.46*10**-308 <= |x|

C performs all floating-point arithmetic in
double-precision. Figure 6-5 shows the format for double-precision
floating-point numbers.

The

1.80*10**308).<=

When a program specifies single-precision numbers in an expression,
C pads the fractional portion of those numbers with zeros,
effectively lengthening the numbers to double-precision,
double-precision number converts to single-precision,C first rounds
the double-precision number before truncating it to single-precisionlength.

When a

HIGH MEMORY LOW MEMORY

BYTE ? BYTE 6 BYTE 5 BYTE 4 BYTE 3 BYTE 2 BYTE 1 BYTE 0
1 11 1 1 1i r li rr i rr i r r i r

XXXXXXXX OOOOOOOO XXXXXXXX 00000000 xxxxxxxx oooooooo xxxxxxxx oooooooo
L I

63 52 0

MANTISSABIASED
EXPONENT

SIGN
BIT

Figure 6-5. Double-precision Floating-point Storage

6.5 Pointer

In small model, a pointer is represented as a 16-bit offset. The
associated segment is the data segment, in register DS. In big
model, a pointer is represented as a 32-bit value: a 16-bit offset
and a 16 bit segment. Also, in big model, the heap can be more than
64K bytes, but no individual allocation on the heap can be larger
than 64K bytes because the offset is only 16 bits.

End of Section 6

6-4

Section 7
Overlays

This section describes how to use LINK-86 to create programs that
consist of separate files called overlays. The advantage of
overlays is that they share the same memory locations, so you can
write large programs that run in a limited memory environment.
Overlay files have a filetype of .OVR.
The modular design provided through overlays enables you to write a
large program that does not need to reside in memory all at once.
For example, many application programs are menu-driven. The user
selects one of a number of operations that the program can perform.
The operations are implemented in separate program modules.
Therefore, there is no reason for them to reside in memory
simultaneously. When an operation completes execution, control
returns to the menu portion of the program. The user can then
select another operation. Using overlays, you can divide such a
program into separate operation subprograms, which can be stored on
disk and loaded into memory only when required.
Figure 7-1 illustrates the concept of overlays. Suppose a menu-
driven application program consists of three separate user-selectable operations. If each operation consists of a module that
requires 30K of memory and the menu portion requires 10K, then the
total memory required for the program is 100K, as shown on the left
in Figure 7-1. However, if the three operation modules are designed
using overlays, as shown on the right in Figure 7-1, the program
requires only 40K for execution because all three functions share
the same memory locations at different times.

7-1

7 OverlaysC Language Programmer's Guide

Operation 30K
3

IOperation 30K
2 Operation100K OperationOperation

330K 21

I (overlay 3)(overlay 1) (overlay 2)

40K
Operation 30K

1

10K MenuMenu 10K ' '

Separate OverlaysWithout Overlays

Figure 7-1. Using Overlays in a Large Program

You can also create overlays in the form of a tree structure, where
each overlay can call other overlays. Section 7.2 describes the
command line syntax for creating nested overlays.
Figure 7-2 illustrates such an overlay structure. The top of the
highest overlay determines the total amount of memory required. In
Figure 7-2, the highest overlay is SUB4.
substantially less memory than would be required if all the
operation modules and suboperation modules had to reside in memory
simultaneously.

Note that this is

7-2

C Language Programmer's Guide 7 Overlays

Sub 4

Sub 1 Sub 2 Sub 3

T

Overlay 1 Overlay 2 Overlay 3

I

Menu

Figure 7-2. Tree Structure of Overlays

7.1 Writing Programs That Use Overlays

There are two restrictions for programs that use overlays,
first restriction is that all overlays must be on the default drive.
The second restriction is that the overlay names are determined at
compile time and cannot be changed at run-time.
For example, the following C source program is a root module named
MAIN.C, which uses one overlay named OVERLAY1.

The

main()

{
printf("root\n");
overlayl("overlayl\n");
printf("return from overlay\n");

}

OVERLAYl is defined as follows:

overlayl(s);
char *s?

{
printf(s);

}

7-3

7.1 Writing Overlay ProgramsC Language Programmer's Guide

When you pass arguments to an overlay, you must ensure that the
number and type of the arguments match for the calling program and
the overlay.
Upon execution, the program first displays the message "root" at the
console. The calling statement then transfers control to the
overlay. When the overlay receives control, it displays the message
"overlayl" at the console,
next statement in the root.

OVERLAYl then returns control to the

If the overlay is already in memory when the root calls it, the
overlay manager transfers control directly to the overlay without
reloading it.
Note the following constraints:

•The label used in the calling statement is the actual name of
the .OVR file loaded by the overlay manager, so the two names
must match.

•The name of the entry point to an overlay need not match the
You should use the samename used in the calling statement,

name to avoid confusion.

•The overlay manager loads overlays only from the drive that was
Thethe default drive when the root module began execution,

overlay manager disregards any changes to the default drive
that occur after the root module begins execution.

•The names of the overlays are fixed. To change the names of
the overlays, you must edit, compile, and relink the program.

•No nonstandard statements are needed in your source program.
Therefore, you can postpone the decision on whether or not to
create overlays until link-time.

7.2 LINK-86 Command Lines for C Overlays

You specify overlays in the LINK-86 command line by enclosing each
overlay specification in parentheses,
included automatically from the CLEAR library.
You can specify an overlay using any of the following forms:

The overlay manager is

LINK86 ROOT (0VERLAY1)
LINK86 ROOT (OVERLAY1,PART2,PART3)
LINK86 ROOT (OVERLAY1=PART1,PART2,PART3)

The first form produces the file 0VERLAY1.0VR from the file
OVERLAY1.OBJ• The second form produces the file 0VERLAY1.0VR from
OVERLAY1.OBJ, PART2.OBJ and PART3.OBJ. The third form produces the
file 0VERLAY1.0VR from PARTI.OBJ, PART2.OBJ and PART3.OBJ.

7-4

C Language Programmer's Guide 7.2 LINK-86 Command Lines

In the command line, a left parenthesis indicates the start of a new
overlay specification and also indicates the end of the group
preceding it. All files to be included at any overlay must appear
together, without any intervening overlay specifications. You can
use spaces to improve readability, and commas can separate parts of
a single overlay. However, do not use commas to set off the overlay
specifications from the root module or from each other,
overlays must be last on the command line.

For example, the following command line is invalid:

Also,

A>LINK86 ROOT(OVERLAYl),MOREROOT

The correct form of the command is as follows.
A>LINK86 ROOT,MOREROOT(OVERLAYl)

To nest overlays, you must specify them in the command line with
nested parentheses as shown below. SUB1, SUB2, SUB3, and SUB4 are
nested overlays in the following example.

A>LINK86 MENU,(FUNCl(SUBl)(SUB2)(FUNC2)(FUNC3(SUB3)(SUB4))

7-3 General Overlay Constraints

The following general constraints apply when you use LINK-86 to
create overlays:

•Each overlay has only one entry point. The overlay manager
assumes that this entry point is at the beginning of the
overlay.

• You cannot make an upward reference from a module to an entry
point in an overlay that is higher on the tree,
exception is a reference to the main entry point of the overlay
as described above. You can make downward references to entry
points in overlays lower on the tree or in the root module.

The only

•Common segments that are declared in one module cannot be
initialized by a module higher in the tree. LINK-86 ignores
any attempt to do so.

End of Section 7

7-5

Appendix A
System Library Routine Summary

There are two versions of the CLEAR (Common Language Environment And
Run-time) library. CLEAR is configured for both 8086/8088 memory
models: small and big. Refer to Section 2.4 for a description of
memory models. Both CLEAR files are on your C product disks.
• CLEARS.L86 (small memory version)
•CLEARL.L86 (big memory version)

Most of the modules in the system library are accessible directly
from your C program using the appropriate function names. However,
certain routines in the system library are designed for access
internally by other functions in the library and cannot be accessed
explicitly from a program. All module names in the system library
are in capital letters but function names are in lowercase. Module
names might vary slightly for different versions of the system
libraries.

Each function in the system libraries performs a certain task.
Groups of functions fall into related categories according to what
each one does. For example, one group of functions pertains to
stream I/O. Another group operates on strings. There are seven
general categories for system functions.

• Regular File Access Functions
•Stream File Access Functions
• String Functions
• ASCII Character Macros
• Memory Management Functions
•Double-precision Floating-point Functions
• Utility Functions

The following lists present the system library functions in the
appropriate category. Refer to Section 3 for a complete description
of each function. Remember, function names are in lowercase.

A-l

A System Library Routine SummaryC Language Programmer's Guide

Regular File Access Functions

close
creat
creata
creatb
lseek
open

opena
openb
read
tell
unlink
write

Stream File Access Functions

gets
getw
printf
putc
putchar
putl
puts
putw
rewind
scant
setbuf
ungetc

fputc
fputs
fread
freopen
freopena
frepoenb
fscant
fseek
ftell
fwrite
getc
getchar
getl

clearerr
fclose
fdopen
feof
terror
fflush
fgetc
fgets
fileno
fopen
fopena
fopenb
fprintf

String Functions

strchr
strcmp
strcpy
strlen
strncat
strncmp
strncpy
strrchr

atof
atoi
atol
index
mktemp
rindex
sprintf
sscanf
strcat

ASCII Character Macros

isupper
toascii
tolower
toupper

islower
isprint
ispunct
isspace

isalnum
isalpha
isascii
iscntrl
isdigit

s'

A-2

A System Library Routine SummaryC Language Programmer's Guide

Memory Management Functions

brk
calloc
free
malloc
realloc
sbrk
zalloc

Double-precision Floating-point Functions

log
log10
sin
sqrt
tan

atan
atof
cos
exp
fabs

Utility Functions

_exit
getpass
getpid
isatty
longjmp
perror

qsort
rand
setjmp
srand
swab
ttyname

abs
access
BDOS

chmod
chown
exit

End of Appendix A

A

1

A-3

Appendix B
Compiler Option Summary

Command line option switches are reserved letters that send special
instructions to the compiler,
consists of a dash followed by the option letter. You cannot place
spaces between the dash and the letter. However, you must place at
least one space between each dash/option letter combination that you
use in the command line. Option switch specifications must follow
the source file in the command line. The following table lists the
compiler command line option switches and a brief description of
each. Notice that certain option switches require an additional
parameter.

An option switch specification

Table B-l. Compiler Command Line Options

DescriptionOption

|files| are-a|files| Invoke LINK86 automatically,
the object files and libraries to link.
Specify the filename and [I] for a LINK86
command line input file.

(Default isEnable big memory model,
small model.)-b

-d|name| Define|name|as the value 1. Works like
#define in the source code. Defines names
in lowercase only.

Use 8087 math coprocessor.-f
Suppress sign-on messages.

Search specified disk drive for #include
files.

-h
-i|drive:|

Disable short/long jump optimizer.
Generate program listing. Send listing to
|name|. (Default|name| is CON:)

Disable code optimizer for faster
compilation.

-j
-11name|

-n

B-l

B Compiler Option SummaryC Language Programmer's Guide

Table B—1. (continued)

DescriptionOption

-o|filename| Specify name for object file,
does not contain a period, .OBJ will be
appended to filename.

If filename

Execute preprocessor module only,
output in file CTEMP.TOK.

Place-P

-q|number| Set number of code generator modes to save
space in symbol table,
minimum is 100.)

(Default is 500;

-r|name| Request program interlisting (reverse
assembly). Send interlisting to |name|.
(Default|name| is CON:)

Set compiler message display level.
Should appear before other switches in
command line. |number| can range from 1
to 5 to produce the following information:

-v|number|

Display general information messages
only.
Display a # character as compiler
processes each function.

Display function name as compiler
processes each function.
Display start/end messages for
#include files.

-vl

-v2

-v3

-v4

-v5 Display filename and line number as
compiler processes each line.

Set error message display level.|number|
can be 0, 1, or 2.-w|number|

-wO Display all error messages.

-wl Suppress error warning messages.

-w2 Suppress all error messages.
Call an assembly routine to save and
restore registers rather than generate
code to do it in-line. Program compiles
smaller but runs slower. Use with small
model only.

-x

-z|drive:| Place temporary work files on specified
disk drive.

B-2

B Compiler Option SummaryC Language Programmer's Guide

Table B—1. (continued)

DescriptionOption

-0|drive:| Specify location of compiler preprocessor
module (DRC860.CMD).

-1|drives| Specify location of compiler parser and
code generator module (DRC861.CMD).
S p e c i f y l o c a t i o n o f c o m p i l e r
listing/disassembly file merge utility
(DRC862.CMD).
Specify location of LINK86 (LINK86.CMD).

-2|drive:|

-3|drive:|

End of Appendix B

B-3

Appendix C
Error Messages

Compiler error messages can be divided into two different
categories: error reports and error warnings,
indicate mistakes in your source program, such as syntax
improper data type specifications. Error reports include messages
such as "Right brace } is missing" and "Same statement label used
more than once."

Error warnings effectively indicate that some error might occur if
you do not take some corrective action. For example, error message
83 is a warning that suggests caution using the indirection operator
with integers. Some warnings, such as number 95 "Subscript is
truncated to short int", simply inform you of a certain activity
taking place during compilation.
You can use compiler option switch -w to reset the error message
display level. You can have the compiler display all messages,
suppress only the warning messages, or suppress all messages,
to Section 2.1.3 for information on how to use compiler option
switches.
All compiler error messages correspond to an assigned error number.
Table C-l presents the C error messages listed in numerical order.
Each entry shows the message text, the most common cause of the
error, and a suggestion for fixing the error. Error warnings are
clearly distinguished from error reports in Table C-l.

Error reports
errors and

Refer

Table C-l. Error Messages

MeaningError

Out of memory. An allocate function returns NULL.

Compilation stops because available memory
is exhausted.
functions compiled in a single module.

1

Reduce the number of

Identifier not specified in type or storage class
declaration.

2

The compiler read a type or storage class
declaration keyword, but could not find a
corresponding identifier,
syntax error in the source program.

Correct the

C-l

C Language Programmer's Guide C Error Messages

Table C-l. (continued)

MeaningError

A public function definition is declared external.
Do not declare public function definitions
external.
name external using the keyword extern in
any module that calls the function.
Remove the keyword extern from the public
function definition.

3

Declare the public function

Parentheses () missing in function declaration.
The compiler read an opening brace {
indicating the start of a function body,
but did not find a corresponding parameter
list in the function declaration,
must place parentheses, (), after the
function name in any function declaration
that does not have parameters.

4

You

<identifier...not declared as a function.5

The identifier shown in the message text
was referenced as a function,
identifier has been declared, but not as a
function. Change the declaration or use
different names for variables and
functions.

The

Two functions have the same name.6

The program uses one function name to
identify two different functions. Change
one of the function names.

Conflicting data type specified for a function.
The compiler detects conflicting data type
references for a function,
happens when a function is declared
implicitly as an integer and is declared
later as returning a noninteger type.
Declare the function to return the
appropriate data type before its first
use.

7

This often

C-2

C Error MessagesC Language Programmer's Guide

Table C-l. (continued)

MeaningError

Data type not specified in variable declaration.
The compiler read a variable name that has
no type or storage class declaration.
Functions automatically default to an
integer return value,
variable name with an appropriate type,
storage class, or both.

8

Declare the

Global variable declared with "register" storage
class.

9

The register storage class is not
meaningful for extern or static variables.
Delete the register storage class in the
variable declaration.

Conflicting data type specified for a function.
The compiler detects conflicting data type
references for a function,
happens when a
implicitly as an integer and is declared
later as returning a noninteger type.
Declare the function to return the
appropriate data type before its first
use.

10

This often
function is declared

Conflicting storage class keywords in declaration.

The compiler read a
conflicting storage classes,
register or static extern. Specify only
one storage class in each declaration.

11

declaration with
such as auto

Conflicting data type keywords in declaration.
The compiler read a declaration with
conflicting data types, such as float int
or long float. Specify only one data type
in each declaration.

12

C-3

C Language Programmer's Guide C Error Messages

Table C—1. (continued)

MeaningError

Use the keywords unsigned/long/short with int only.
You can use the type qualifiers unsigned,
long, and short on int data items only.
Change any incorrect declarations in your
source program.

13

Do not use the "unsigned long" type declaration.14

Some compilers permit use of the "unsigned
long" type declaration. You cannot use it
in Digital Research C. Delete the keyword
"unsigned".

Conflicting type qualifiers "short/long" in
declaration.

15

You cannot use the type qualifiers short
and long in the same variable or function
declaration,
for each declaration.

Choose one type qualifier

Conflicting definitions for structure tag
identifier.

16

The program uses an identifier as a
structure tag. That identifier is already
defined as something else. Change the
first declaration of the identifier or
choose a different structure tag.

Identifier or left brace { missing in struct or
union declaration.

17

Each struct and union declaration requires
either a left brace { or an identifier.
Correct the syntax error in the source
code.

f

C-4

C Language Programmer's Guide C Error Messages

Table C-l. (continued)

MeaningError

Storage class specified in struct or union
declaration.18

You cannot declare elements of a struct or
union with storage class keywords (static,
extern, register, auto). Delete storage
class keywords in all struct and union
declarations.

Data type not specified in struct or union
declaration.

19

Each struct or union declarations must
contain a data type specification. The
compiler did not find one. Specify an
appropriate type

Use integer constants to define bit field width.

You can use only integers to define the
width of bit fields in a struct or union.
Change the constant to an integer.

20

Conflicting offsets or data type declared for
<identifier>.21

In Digital Research C, all struct and
union fields exist in the same name space.
If you use the name in multiple
declarations, each field must be unique or
exist at the same offset with the same
type.

A comma or semicolon is missing.22

A required comma or semicolon is missing.
Correct the syntax error in the source
code.

23 Internal compiler error.
Compiler error. Contact the Digital
Research Technical Support Center.

C-5

C Language Programmer's Guide C Error Messages

Table C-l. (continued)

MeaningError

Do not use "static" or "extern" to declare
parameters.

24

You cannot use the storage class keywords
static or extern to declare parameters,
because parameters pass on the stack and
cannot be allocated statically. You can
use auto and register in parameter
declarations. Delete any incorrect
storage class declarations for parameters.

Data type not specified in parameter declaration.25

You must declare a data type for each
parameter. Specify an appropriate type.

Do not use abstract declarator in parameter
declaration.26

You must supply a identifier to declare
parameters. For example, "int j" is
incorrect. Correct the syntax error in
the source code.

<identifier>...not specified as a parameter.27

The compiler read a declaration for an
identifier that is not in the list of
parameters. Probably a syntax or typing
mistake. Correct the syntax error in your
source code or move the declaration after
the opening left brace.

cidentifier>...must be pointer or scalar.28

You cannot declare structures as
parameters in Digital Research C. Change
your source program.

Identifier not specified in parameter declaration.
Parameter declaration syntax requires an
identifier. The compiler cannot find one.
Correct the syntax error in the source
code.

29 r

C-6

C Language Programmer's Guide C Error Messages

Table C-l. (continued)

MeaningError

30 Function body is specified as a parameter.
You can declare functions as parameters
but those functions cannot contain
statements. Correct the syntax error in
the source code.

Use integer constant expression to specify array
bounds.

31

You must specify the bounds of an array
with a constant expression that can be
reduced to an integer. Correct the syntax
error in the source code.

<identifier>...undefined for "goto" statement.32

A goto statement references a label that
is not defined ,

statement or define the label.
Correct the goto

)
WARNING: <identifier> is declared, but not
referenced.

33

The identifier in the message text is
declared but not referenced in the
prog ram.
MESSAGE.

This is an ERROR WARNING

34 <identifier>.
declaration.

struct or union referenced before

A struct or union variable is referenced
before the struct or union is declared.
Define the struct or union.

35 Cannot initialize a function.
You placed an equal sign after a function
declaration specifying initialization.
Correct the syntax error in the source
code.

C-7

C Language Programmer's Guide C Error Messages

Table C-l. (continued)

MeaningError

Initializing variable with "extern".36

You can initialize variables with the
extern keyword.
Digital Research C, but not described by
Kernighan and Ritchie. This is an ERROR
WARNING MESSAGE.

This is allowed in

Array dimensions are extended automatically.
The syntax (array_name[<num>] = {...}) is
used, but more data items are supplied
than stated in num. The size of the array
is extended. Correct the size declaration
for the array.

37

Switch expression cannot be floating-point.38

The expression in a switch statement must
be nonfloating,
error in the source code.

Correct the semantic

"case <const>"Cannot read switch statement,
ignored.

39

The compiler read the construct "case" but
did not process a switch statement,
"case" construct is ignored. Correct the
syntax error in the source code. Possibly
missing a left brace after the switch.

The

Constant in "case" construct cannot be
floating-point.40

The constant expression after the keyword
case is not a standard C language
construct and does not work in Digital
Research C. Correct the semantic error in
the source code.

C-8

C Language Programmer's Guide C Error Messages

Table C-l. (continued)

MeaningError

41 Cannot read switch statement. "default:" ignored.

The compiler read a default:
but did not process a switch statement.
The default: construct is ignored.
Correct the syntax error in the source
code. Probably missing a left brace after
the switch.

construct

42 Break location undefined. No loop or switch.

The compiler read a break statement- but
did not process a for/while loop.
Probably a syntax error,
source program.

Correct the

43 Continue location undefined. No loop or switch.

The compiler read a continue statement but
did not process a for/while loop.
Probably a syntax error,
source program.

Correct the

Identifier not specified in "goto" statement.44

An identifier is required after a goto
statement. The compiler did not find the
identifier. Correct the syntax error in
the source code.

Same statement label used more than once.45

You used the same label more than once in
a function. Correct the semantic error in
the source code.

<identifier>...defined more than once.46

The same variable or function name is
defined more than once in the same
compilation,
source program.

Correct the error in the

C-9

C Language Programmer's Guide C Error Messages

Table C-l. (continued)

MeaningError

cidentifier>...Undefined identifier.47 r
The program references an identifier
before it is defined,
in the source program.

Correct the error

Unexpected end-of-file (EOF) on input file.

A misplaced end-of-file is detected on the
input file. Probably mismatched braces.
Correct the error in the source program.

48

Comma or semicolon is missing.49

Syntax error. Correct the error in the
source program.

Right brace } is missing.
Syntax error. Correct the error in the
source program.

50

(

Left brace { is missing.51

Syntax error. Correct the error in the
source program.

Right parenthesis) is missing.52

Syntax error. Correct the error in the
source program.

Right square bracket] is missing in array
declaration.

53

Syntax error in array declaration.
Correct the error in the source program.

r

C-10

C Language Programmer's Guide C Error Messages

Table C-l. (continued)

MeaningError

Function parameters cannot have parameters.
The compiler read a parameter declaration
for an identifier that already exists as a
parameter to a function,
error in the source program.

54

Correct the

Right parenthesis) is missing.55

Syntax error. Correct the error in the
source program.

Do not list parameters in the function declaration.56

You cannot list identifiers between the
parentheses in a function declaration such
as int f().
function body definition,
error in the source program.

List the identifiers in the
Correct the

Comma or semicolon is missing.57
SsJ Syntax error. Correct the error in the

source program.

Right brace } is missing.58

Syntax error. Correct the error in the
source program.

Comma or semicolon is missing.59

Syntax error. Correct the error in the
source program.

60 Semicolon is missing.
Syntax error. Correct the error in the
source program.

C-ll

C Language Programmer's Guide C Error Messages

Table C—1. (continued)

MeaningError

61 Too many initializers. Right brace } is missing.

You specified more initial values than
variable locations. Correct the error in
the source program.

Left parenthesis (is missing.
Syntax error. Correct the error in the
source program.

62

Keyword "while" is missing in "do...while"
construct.

63

Probably mismatched braces. Correct the
error in the source program.

64 Colon is missing.
Syntax error. Correct the error in the
source program.

Bad constant load.Internal compiler error.
Internal compiler error.
Digital Research Technical Support Center
if this message displays isolated from any
other error messages.

65

Contact the

66 Internal compiler error. Unknown pointer size.
Internal compiler error. Contact the
Digital Research Technical Support Center
if this message displays isolated from any
other messages.

Use operators ++ and — on int/char/long/short only.

You used ++ and — operators on function
pointers. Correct the semantic error in
the source code.

67

r

C-12

C Language Programmer's Guide C Error Messages

Table C-l. (continued)

MeaningError

68 MESSAGE SPACE RESERVED

69 MESSAGE SPACE RESERVED

70 MESSAGE SPACE RESERVED

Cannot return certain types of expressions.71

The compiler read a return statement but
can not return certain types of
expressions, such as whole structures.
Correct the semantic error in the source
program.

72 Internal compiler error.

Internal compiler error. Contact the
Digital Research Technical Support Center.

Use constant expression to initialize static and
extern variables.73

You can initialize statically allocated
variables with a constant expression only.
A statically allocated variable is one
declared either static or extern. You can
initialize automatic variables with
nonconstant expressions,
semantic error in the source program.

Correct the

74 MESSAGE SPACE RESERVED

75 MESSAGE SPACE RESERVED

Variable is not large enough to hold a pointer.

You specified a variable that is not large
enough to hold a pointer. For example, a
char variable was specified to hold an
array name. Correct the semantic error in
the source program.

76

C-13

C Error MessagesC Language Programmer's Guide

Table C-l. (continued)

MeaningError

Variable too large to hold initial value.
You specified a variable that is not large
enough to hold the initial value. Correct
the semantic error in the source program.

77

Offsets into other segments not implemented.

Internal compiler error.
Digital Research Technical Support Center.

78

Contact the

With pointers, only use operators: +

You specified incorrect operators for use
with pointers. Correct the semantic error
in the source program.

++79

80 MESSAGE SPACE RESERVED

81 Invalid parameter expression.
Internal compiler error. Contact the
Digital Research Technical Support Center
if this message displays isolated from any
other error messages.

82 MESSAGE SPACE RESERVED

83 WARNING: Indirection for non-pointers is not
portable.
Integers can be indirected successfully in
Digital Research C (small model only) and
PDP-11 C. This is an ERROR WARNING
MESSAGE.

Do not use +Cannot add arrays or structures,
operator with arrays.

The program attempts to add arrays.
Correct the semantic error in the source
program.

84

r

C-14

C Language Programmer's Guide C Error Messages

Table C-l. (continued)

MeaningError

85 MESSAGE SPACE RESERVED

Use only += or -= operators with pointers.
You cannot use certain assignment
operators, such as /=, in an expression
that involves a pointer,
semantic error in the source program.

86

Correct the

87 Colon is missing.
Syntax error. Correct the error in the
source program.

Cannot add pointers. Do not use + operator with
pointers.88

The addition operator, +, is used in an
expression with two pointers. You cannot
add pointers. Subtraction is acceptable.
Correct the semantic error in the source
program.

89 Incorrect expression syntax.
Syntax error. Correct the error in the
source program,
parentheses.

Often mismatched

Comma or right parenthesis expected in parameter
list.

90

Syntax error. Correct the error in the
source program.

Expression is missing before [operator.
An lvalue expression of type array or
pointer is required on the left of the [
operator.
the source program.

91

Correct the semantic error in

C-l5

C Language Programmer's Guide C Error Messages

Table C-l. (continued)

MeaningError

An lvalue is required before [operator.

An expression of the wrong type exists on
the left of the [operator,
expression must be an array or pointer.
Correct the semantic error in the source
program.

92

The

Array or pointer required on left of [operator.
See error 92.

93

94 Array or pointer required. Cannot subscript.

See error 92.

95 WARNING: Subscript is truncated to short int.
In the 8086 implementation Sf C a single
aggregate data structure cannot exceed 64K
bytes. A long int is used as a subscript
and the compiler discards the upper word.
This is an ERROR WARNING MESSAGE.

Right square bracket] is missing.

Syntax error. Correct the error in the
source program.

96

Identifier missing on right of . operator.

A required identifier that names a struct
or union member is missing after the
period operator. Correct the syntax error
in the source program.

97

Expression missing on left of . operator

A required expression describing a struct
or union is missing before the period
operator. Correct the syntax error in the
source program.

98

r

C-16

C Language Programmer's Guide C Error Messages

Table C-l. (continued)

MeaningError

Left operand for . operator must be a struct.
The operand to the left of a period
operator is not a struct or union.
Correct the semantic error in the source
code.

99

100 WARNING: Non-local structure field assumed.
The struct or union member used with the
period operator is not defined as being in
the same structure described by the left
operand.
MESSAGE.

This is an ERROR WARNING

101 Identifier missing on right of -> operator.
A required identifier that names a struct
or union member is missing after the ->
operator. Correct the syntax error in the
source program.

102 Expression missing on left of -> operator.
A required expression describing a struct
or union is missing before the ->operator. Correct the syntax error in the
source program.

Left operand of -> operator must be a pointer.
The operand to the left of a -> operator
is not a pointer,
error in the source program.

103

Correct the semantic

104 WARNING: Non-local structure field assumed.
The struct or union member used with the
period operator is not defined as being in
the same structure described by the left
operand.
MESSAGE.

This is an ERROR WARNING

C-17

C Language Programmer's Guide C Error Messages

Table C-l. (continued)

MeaningError

105 Division by the constant 0.

The compiler, in an attempt to optimize
constant expressions, read an expression
with a zero on the right of a divide
operator. Correct the semantic error in
the source program.

106 Operand types do not match. Cannot coerce to
compatible types.

Conflicting types for operands in an
expression.
coerced automatically to compatible types.
Specify compatible types for operands.

The operands cannot be

107 Cannot coerce operand type to double.
The compiler attempts to coerce the type
of an expression before performing an
operation but can not.
double_var * pointer,
semantic error in the source program.

For example,
Correct the

108 Cannot coerce operand type to long.
Correct the semantic errorSee error 107.

in the source program.

109 Cannot coerce operand type to unsigned.

See error 107. Correct the semantic error
in the source program.

110 WARNING: Indirection for non-pointers is not
portable.
Integers can be indirected successfully in
Digital Research C (small model only) and
PDP-11 C.
message.

This is an ERROR WARNING r

C-18

C Language Programmer's Guide C Error Messages

Table C-l. (continued)

MeaningError

111 WARNING: & operator (address of) used redundantly.
An array is specified without a subscript
expression, and the ampersand operator is
used redundantly. The compiler ignores
the &. The expression is, by definition,
the address of the array. This is an
ERROR WARNING MESSAGE.

112 The & operator (address of) requires an lvalue.
The & operator cannot accept the address
of an rvalue expression,
semantic error in the source program.

Correct the

An lvalue is required with ++ or — operator.
The ++ and — operators require an lvalue.
The compiler did not find one.
the semantic error in the source program.

113

Correct

114 Incorrect operand type for ++ or — operator.
You cannot use the ++ and — operators on
arrays or structures,
semantic error in the source program.

Correct the

115 Data type not specified for expression after sizeof
operator.

When an expression is not found after the
sizeof operator the compiler assumes a
type declaration but finds none. Correct
the semantic error in the source program.

An lvalue is required with ++ or — operator.
The ++ and — operators require an lvalue
but the compiler cannot find one. Correct
the semantic error in the source program.

116

C-19

C Language Programmer's Guide C Error Messages

Table C-l. (continued)

MeaningError

117 Incorrect operand type for ++ or — operator.

The ++ and — operators require an operand
of the appropriate type,
semantic error in the source program.

Correct the

118 MESSAGE SPACE RESERVED

119 Output file write error. Disk is probably full.

Write function returns NULL indicating
that available disk space for the output
file is exhausted,
stopped. Use a disk that has more space.

Compilation is

120 WARNING: Not enough registers available for
variables.
You specified too many register variables
in the program.
registers to hold all the variables,
register storage class is automatically
converted to auto. This warning displays
only if you specify the -v3, -v4, or -v5
option switches.

There are not enough
The

121 WARNING: Additional registers available for
variables.
Additional registers are available to hold
register variables that you specified in
the program. This warning displays only
if you specify the -v3, -v4, or -v5 option
switches.

End of Appendix C

r

C-20

Appendix D
Variations among Compilers

Digital Research C is designed to be compatible with the UNIX
Version 7 operating system,
variations among Digital Research C for the 8086/88, Digital
Research C for the 68000, and the Kernighan and Ritchie description
of UNIX C.

This appendix presents the major

•Digital Research C for the 8086 does not support the #line
preprocessor command.

•The library functions abort() and signal() are available in the
68000 version of C but not the 8086.

•The =op form of the standard op= operators is not implemented
on the 8086 version of C.
version.

It is implemented on the 68000

•Kernighan and Ritchie explain in The C Programming Language
that you should define a global variable once and only once
without the keyword extern but that you should specify the
extern keyword for all other references to that global
variable. However, Kernighan's and Ritchie's programming
convention is not compatible with UNIX or most other C
compilers. Instead, UNIX and most other C compilers let you
define a global variable in as many places as you like, with or
without the extern keyword, provided that the definitions are
identical. Digital Research C follows this latter procedure.

w

•Digital Research C does not support the UNIX function listed in
Section 3.

End of Appendix D

D-l

Appendix E
C Style Guide

To make your C language programs portable, readable, and easy to
maintain, follow the stylistic rules presented in this section.
However, no rule can predict every situation; use your own judgment
in applying these principles to unique cases.

E.l Modularity

Modular programs reduce porting and maintenance costs. Modularize
your programs, so that all routines that perform a specified
function are grouped in a single module. This practice has two
benefits: first, the maintenance programmer can treat most modules
as black boxes for modification purposes; and second, the nature of
data structures is hidden from the rest of the program. In a
modular program, you can change any major data structure by changing
only one module.

E.1.1 Module Size

A good maximum size for modules is 500 lines,
bigger than the size required for a given function.

Do not make modules

E.l.2 Intermodule Communication

Whenever possible, modules should communicate through procedure
calls. Avoid global data areas. Where one or more compilations
require the same data structure, use a header file.

E.l.3 Header Files

In separately combined files, use header files to define types,
symbolic constants, and data structures the same way for all
modules. The following list gives rules for using header files.

•Use the finclude "file.h" format for header files that are
project-specific. Use #include <file.h> for system-wide files.
Never use device or directory names in an include statement.

•Do not nest include files.

•Do not define variables other than global data references in a
header file. Never initialize a global variable in a header
file.

•When writing macro definitions, put parentheses around each use
of the parameters to avoid precedence mix-ups.

E—1

E.2 Required Coding ConventionsC Language Programmer's Guide

E.2 Required Coding Conventions

To make your programs portable, you must adhere strictly to the
conventions presented in this section. Otherwise, the following
problems can occur:

•The length of a C int variable varies from machine to machine.
This can cause problems with representation and with binary I/O
that involves int quantities.

•The byte order of multibyte binary variables differs from
machine to machine. This can cause problems if a piece of code
views a binary variable as a byte stream.

•Naming conventions and the maximum length of identifiers differ
from machine to machine. Some compilers do not distinguish
between uppercase and lowercase characters.

•Some compilers sign-extend char and short variables to int
during arithmetic operations; some compilers do not.

•Some compilers view a hex or octal constant as an unsigned int;
For example, the following sequence does notsome do not.

always work as expected:

LONG data;

printf("%ld\n",(data & Oxffff));

The printf statement prints the lower 16 bits of the long data
item data.
constant Oxffff to Oxffffffff.

However, some compilers sign-extend the hex

•You must be careful of evaluation-order dependencies,
particularly in compound BOOLEAN conditions. Failure to use
parentheses correctly can lead to incorrect operation.

E.2.1 Variable and Constant Names

Local variable names should be unique in the first eight characters.
Global variable names and procedure names should be unique in the
first seven characters. All variable and procedure names should be
completely lowercase and should not start with underscore
characters.

E-2

E.2 Required Coding ConventionsC Language Programmer's Guide

Usually, names defined with a #define statement should be entirely
uppercase.
such as getc and isascii.
characters.
character restrictions on global and local names by redefining long
names as unique short names.

You should not redefine global names as local variables within a
procedure.

The only exceptions are functions defined as macros,
These names must be unique to 16

You can use #define to get around the seven and eight

E.2.2 Variable Types

PORTAB.H contains a set of variable type declaration keywords (Table
E-l) and storage class declaration keywords (Table E-2) that you can
use to ensure consistent internal representation of data types
across different processors.
Declaration keywords in PORTAB.H are macro definitions specified
with #define.
programs designed to be portable because of variations in internal
representation among different compilers. For example, an integer
declared with the keyword int might be 16-bits long on one processor
and 32-bits on a different processor. However, an integer declared
with the macro WORD is 16-bits on any processor. The standard I/O
file STDIO.H already includes PORTAB.H. Therefore, if your program
does not include STDIO.H, you must include PORTAB.H explicitly to
use the macros shown in Tables 3-1 and 3-2.

Using standard type specifiers can be unsafe in

Table E-l. Variable Type Macro Definitions

C Base TypeType

(32 bits)
(16 bits)
(16 bits)
(16 bits)
(8 bits)
(8 bits)
(16 bits)

signed long
signed short
unsigned short
short
signed char
unsigned char
int
void (function return)

LONG
WORD
UWORD
BOOLEAN
BYTE
UBYTE
DEFAULT
VOID

Table E-2. Storage Class Macro Definitions

C Base ClassClass

register variable
auto variable
module static variable
global variable definition
global variable reference

REG
LOCAL
MLOCAL
GLOBAL
EXTERN

E-3

C Language Programmer's Guide E.2 Required Coding Conventions

You should declare global variables at the beginning of the module.
Define local variables at the beginning of the function in which
they are used. You should always specify the storage class and
type, even though the C language does not require this.

E.2.3 Expressions and Constants

Write all expressions and constants to be implementation-independent. Always use parentheses to avoid ambiguities. For
example, the construct

if(c = getchar() == '\n')

does not assign the value returned by getchar to c. Instead, the
value returned by getchar is compared to '\n', and c receives the
value 0 or 1 (the true/false output of the comparison). The value
that getchar returns is lost,
assignment solves the problem:

if((c = getchar()) == '\n')

Write constants for masking, so that the underlying int size is
irrelevant. In the example

Putting parentheses around the

LONG data;

printf("%ld\n",(data & OxffffL);

the printf statement uses a long hex constant for masking,
solves the problem for all compilers,
complement often yields ~0xff instead of Oxff00.

This
Specifying the one's

For portability, character constants must consist of a single
character. Place multicharacter constants in string variables.
Commas that separate arguments in functions are not operators.
Evaluation order is not guaranteed. For example, the following
function call might perform differently for different compilers.

printf("%d %d\n",i++,i++);

Pointer ArithmeticE.2.4
Do not manipulate pointers as ints or other arithmetic variables. C
allows the addition or subtraction of an integer to or from a
pointer variable. Do not attempt logical operations, such as AND or
OR, on pointers. A pointer to one type of object can convert to a
pointer to a smaller data type with complete generality. Converting
a pointer to a larger data type can cause alignment problems.

E-4

C Language Programmer's Guide E.2 Required Coding Conventions

You can test pointers for equality with other pointer variables and
constants, notably NULL. Arithmetic comparisons, such as >=, do
not work on all compilers and can generate machine-dependent code.

When you evaluate the size of a data structure, remember that the
compiler might leave holes in a data structure to allow for
alignment. Always use the sizeof operator.

E.2.5 String Constants

Allocate strings so that you can easily convert programs to foreign
languages. The preferred method is to use an array of pointers to
constant strings, which is initialized in a separate file. This
way, each string reference then references the proper element of the
pointer array.
Never modify a specific location in a constant string, as in the
following example:

string[] = BOOS Error On x:BYTE

string[14] = 'A';

Foreign language equivalents are not likely to be the same length as
the English version of a message.
Never use the high-order bit of an ASCII string for bit flags.
Extended character sets make extensive use of the characters above
0x7F.

E.2.6 Initialized and Uninitialized Data

Usually, C programs have three sections:
instructions), initialized data, and uninitialized data,
modifying initialized data if at all possible. Programs that do not
modify the data segment can aid the swapping performance and disk
utilization of a multiuser system.
Also, if a program does not modify the data segment, you can place
the program in ROM with no conversion. This means that the program
does not modify initialized static variables. This restriction does
not apply to the modification of initialized automatic variables.

code (program
Avoid

E-5

E.2 Required Coding ConventionsC Language Programmer's Guide

E.2.7 Recommended Module Layout

The following list tells you what to include in a module.

• At the beginning of the file, place a comment describing the
the following items:

- the purpose of the module
- the major outside entry points to the module
- any global data areas that the module requires
- any machine or compiler dependencies

• Include file statements.

•Module-specific #define statements.
Every variable•Global variable references and definitions,

should include a comment describing its purpose.

•Procedure definitions. Each procedure definition should
contain the following items:

- A comment paragraph, describing the procedure's function,
Describe anyinput parameters, and return parameters,

unusual coding techniques here.
The procedure return type must be

Use VOID when no value returns.- The procedure header,
explicitly specified.

You must explicitly declare storage- Argument definitions,
class and variable type.

Define all local variables
You must explicitly declare- Local variable definitions,

before any executable code,
storage class and variable type.

Procedure code.

Refer to Appendix F for a sample program.

E-6

E.3 Coding SuggestionsC Language Programmer's Guide

E.3 Coding Suggestions

The following suggestions increase program portability and make
programs easier to maintain.

•Keep source code within an 80-character margin for easier
screen editing.

•Use a standard indention technique, such as the following:

- Begin statements in a procedure one tab stop (column eight)
from the left margin.

- Indent statements controlled by an if, else, while, do, or
for one tab stop.
indentions, use two spaces for each nesting level,
going more than five levels deep.

If you require multiple nested
Avoid

- Place the brackets surrounding each compound statement on a
separate line, aligned with the indention of the controlling
statement. For example.
for(i=0;i<MAXNUM;i++)
I

j = compute(i);
if (j > UPPER)

j = UPPER;
output(j);

}

- Place a null statement controlled by an if, else, while, for,
or do on a separate line, indented for readability.

•To document your code, insert plenty of comments. If your code
is particularly abstruse, inserting comments helps clarify it.

•Put all maintenance documentation in the source code itself.
If you do not, the documentation will not be updated when the
code changes.

form-feeds, and white space to improve•Use blank lines,
readability.

End of Appendix E

E-7

Appendix F
Sample C Modules

The modules in this appendix are written and documented in C code
that follows the style conventions discussed in Section 3.

V/* V/* P r i n t f M o d u l e
V/*
// VThis module is called through the single entry point "

_
printf” to

perform the conversions and output for the library functions:
/* V/*

//
// printf - Formatted print to standard output

fprintf - Formatted print to stream file
sprintf - Formatted print to string

The calling routines are logically a part of this module, but are
compiled separately to save space in the user ’s program when only
one of the library routines is used.
The following routines are present:

V/*
/* */

V/*
/* V

V/*
//
// V/* V/*

/* Internal printf conversion / output
Octal conversion routine
Hex conversion routine
Decimal ASCII to binary routine
Output character to string routine
Decimal conversion routine

V_printf_prnt8_prntx
conv_putstr_prntl

The following routines are called:

//
//
V/* V/* V/* V/* V/*
//

Compute length of a string
Stream output routine
Floating point output conversion routine

// strlen
putc
ftoa

V/* V/*
// V/*
*/This routine depends on the fact that the argument list is always

composed of LONG data items.
/*

// V/* V/*
/**/

/*
Include files:*

V
<stdio.h>#include

Listing F-l. __Printf Module

F-l

C Language Programmer's Guide F Sample C Module

/*
* Local DEFINES
V

/* High bit number of LONGtdefine HIBIT 31 V

/*
* Local static data:

^
/******************************j
/* Buffer Pointer
/* -> File/string (if any)
/* Format Pointer
/****************************/

*/
V*_ptrbf = 0

*_ptrst = 0
fmt = 0

MLOCAL BYTE
MLOCAL BYTE
MLOCAL BYTE

V
V*

Listing P-1. (continued)

S'

P-2

F Sample C ModuleC Language Programmer's Guide

* R O U T I N EP R I N T F I N T E R N A L

*
Routine "_printf" is used to handle all "printf" functions, including
"sprintf", and "fprintf".
Calling Sequence:_

printf(fd,func,fmt,argl);

*

*
*
*
*
*
* Where:

Is the file or string pointer.
Is the function to handle output.
Is the address of the format string.
Is the address of the first arg.

fd*
* func

fmt
argl

*

*
*
* Returns:
*

Number of characters output*

* Bugs:
*

It is assumed that args are contiguous starting at "argl", and that
all are the same size (LONG), except for floating point.*

*

*
***/

/ Jr ***************************/_Drintf(fd,f,fmt,al)
LONG
LONG
BYTE
LONG

*//*fd;
/* Function pointer
/* -> Format string
/* -> Arg list
/****************************/
/* Format character temp
/* Output string pointer
/* Right/left adjust flag
/* Temporary buffer
/****************************/
/* Arg Address temporary
/* Arg Value
/* String Length Temp
/* Field Length Temporary */
/* Field width
/* Precision for "%x.yf"
/* '0' or
/* Floating temporary
/* Floating temp, address */
/* Character count
/* Reference function
/***************************/

*/(*f)0;
*fmt;
*al;

V
V

{ VLOCAL BYTE
LOCAL BYTE
LOCAL BYTE
LOCAL BYTE

c; V*s;
adj;
buf[30];

*/
V
V*adx;LOCAL LONG

LOCAL LONG
LOCAL LONG
LOCAL LONG
LOCAL LONG
LOCAL LONG
LOCAL LONG
LOCAL DOUBLE
LOCAL DOUBLE
LOCAL LONG
EXTERN

Vtemporaryx;
*/n;

m;
Vwidth;

prec;
padchar;
zz;
*dblptr;
ccount;_putstr();

V
V' (padding)
V

V
V

Listing F-2. Printf Internal Routine

F-3

C Language Programmer's Guide F Sample C Module

/***************************/
/* Initially no characters */
/* Set buffer pointer
/* Copy address variable
/* Copy file descriptor
/* Copy format address
/***************************/
/* Skip long output

conversions

ccount = 0;_ptrbf = buf;
adx = al?_ptrst = fd;

fmt = fmt;

*/
*/
*/
*/

fmt == 'L'||* fmt == '1')
fmt++j

Vif{*
//
//
*//***

/* This is the main format conversion loop
/* format string. If the character is perform the appropriate
/* conversion. Otherwise, just output the character.
/***

*/Load a character from the
V
*/
*/
V/*

/* Pick up next format char*/

/***************************/

while(c = * fmt++)
/: /

if(c != '%•)
1 V/*

/* If not just output */
/* Bump character count
/***************************/
/* It is a

(*f)(fd,c);
ccount++; */

1
*/else
/l / convert

/* x = address of next arg */
/a**************************/
/* Check for left adjust
/it**************************/
/* Is left, set flag
/* Bump format pointer

x = *adx++?

*/•
_
')if(* fmt ==

i Vadj = '1';
fmt++; V

V1
_

/*
V/* Right adjust

/***************************/
else
adj = 'r';

V/*
*/'O') ? '0' : * /* Select Pad character

/***************************/
/* Convert width (if any) */
/a**************************/
/* '.' means precision spec*/

padchar-(* fmt— _

width = conv();

* - *)if(* fmt ==
/; /
V/* Bump past '.'

/* Convert precision spec

/* None specified
/***************************/

/* Assume no output string */
/* Next char is conversion */

/* Decimal

++ fmt;
prec = conv()? */

/} /
Velse

prec = 0;
V/*

s = 0;
switch (c = * fmt++)

case 'D':
case 'd';_prtl(x);

break;

V/*
V
V/*

/* Call decimal print rtn */
/* Go do output

^**************** **********/
V

Listing F-2. (continued)

F-4

F Sample C ModuleC Language Programmers Guide

// Octalcase 10':
case 'o':

__prnt8(x);
break;

/* Pr int
/* Call octal printer
/* Go do output
y'****************•********* *f
/* Hex

*/
*/
*/

case 1 X ’:
case 'x':

_prntx(x);
break;

*/
/* Print */
/* Call conversion routine */
/* Go do output
f***************************/
/* String

*/

Vcase 'S':
case 's':
s—x;break;

V/* Output?
/* Yes, (easy)
/* Go finish up
/***************************/
/* Character

Output?
/* Just load buffer
/* Go output
y'***************************j
/* Floating point?

V
V

'C':
'c':

*__ptrbf++ = X&0377;
break;

*/case
case *//*

V
V

VE';
• e';

case 1 F 1 :
case 1 f 1:

dblptr = adx-1?
zz = *dblptr;
adx =+ 1;
ftoa (zz, buf, prec, c);
prec = 0;
s = buf;
break;

case
case V/*

/* V
//

/* Assumes 64 bit float! */
/* Load value
/* Bump past second word */
/* Call floating conversion*/
/* Fake out padding routine*/
/* just like string print */
/* Go Output
/***************************y
/* None of the above?
/* Just Output
/* Count it.
/* Fix arg address
/* End switch
>***************************/
/* If s - 0, string is in */
/* "buf",
/* Insure termination */
/* Load address
/***************************/

V

*/

Vdefault:
(*f > (fd,c);
ccount++;
adx— ;

V
V
V

} */

if (s == 0)
! */

*_ptrbf = '0';
s = buf; */

1
//

/* Compute converted length*/
n = (prec < n && prec != 0) ? prec : n;/* Take min(prec,n)

/* m is # of pad characters*/
/***************************/
/* For right adjust,
/* Pad in front

n = strlen (s);
V

m = width-n;
V* r »)

while (m— > 0)
if (adj r ss

V
i v/* v(*f)(fd / padchar);
ccount++;

/* Count it
V/*

} /***************************/

Listing F-2 (continued)

F-5

F Sample C ModuleC Language Programmer’s Guide

/* Output Converted */while (n—){ V/*
Data */(*f)(fd,*s++);

ccount++;
/*
/* Count it */

} V/*
/***************************/
/* If left adjust/ Vwhile (m— > 0)

//
VPad

/* Count padded characters */
/***************************/
/* Reset buffer pointer
/* End else
/* End while
/* If string output,
/* Drop in terminator char */
/***************************/
/* Return appropriate value*./

/* End _printf
/***************************/

/*(*f)(fd / padchar);
ccount++?

}
Vptrbf = buf;r */
*/
*/if((*f) _putstr)

(*f)(fd,101);
JESS

return(ccount);
) V

(continued)Listing F-2

F-6

F Sample C ModuleC Language Programmers Guide

/a***/
V/*

/* P R N T 8 P R O C E D U R E */
/* */

V/*
/* Routine "_prnt8" converts a binary LONG value to octal ascii.

The area at "_ptrof" is used.
Calling Sequence:

V
V/*

/* V
/* */
/* */
/* V_prnt8 < n) ?

V/*
/* "n" is the number to be converted. V
/* */

V/* Returns:
/* V
/* */(none)
/* V

/* */VOID _prnt8 (n)
LONG /* Number to convert Vn;

{ V/*
/* Counts bits
/* Temporary 3-bit value
/* Switch 1 => output
/****************************/
/* Handle 0 as special case */

*/REG WORD
REG WORD
REG WORD

P?
*/k ?
Vsw;

if (n==0)
{ *//*

*_ptrbf++ = ’O';
return ?

/* Put in one zero
And quit

V
/* */

} /* */
/•ft***************************/
/* Indicate no output yet */sw = 0?

V/*
V/* Use 3 bits at a timefor (p=HIBIT ? p > = 0; p =- 3)

if ((k = (n> >p)&0x7) || sw)
V/*
V/* Need to output yet?

/*
/* 1st digit has only 2 bits*/
/* Mask appropriately
/* ASCIIfy digit
/* Set output flag
/* End if
/* End _prnt8
/****************************/

{ */
if (p==HIBIT)

k = k & 02?
*_ptrbf++ = '0' + k ?
sw = 1 ?

V
*/
*/

} */
} V

Listing F-3. Prnt8 Procedure

F-7

F Sample C ModuleC Language Programmer’s Guide

^*** ****************/

F u n c t i o n
/*

V/* P r n t x
V/*
//
VT h e "_prntx" function converts a binary LONG quantity to hex ASCII

and stores the result in "*__ptrbf". Leading zeros are suppressed.

Calling sequence:

/*
//
//
V/*
V/*
V/* _prntx(n);

where "n" is the value to be converted.
//
V/* V/*
V/* Returns:
V/*
// (none)
//

V/*VOID _prntx (n)
LONG n ? *//* 32 bits

/a***************************/
/* A digit
/* Temporary value
/A***************************/
/* Peel off low 4 bits
/* If <> 0, print first
/* Take low four bits

+ d;/* ASCIIfy into buffer
/A***************************/

{
*/d;REG LONG

REG LONG Va;

Vif (a = n> >4)

d - n&Oxf;
*_ptrbf++ =

*/prntx (a & OxOfffffffO);
*/
Vd > 9 ? 'A'+d-lO : '0'

}

Listing F-4. _Prntx Function

F-8

F Sample C ModuleC Language Programmer's Guide

/**/V/*
F u n c t i o n V/* C o n v

V/* V/*
conv" is used to convert a decimal ASCII string in V/* Function "

the format to binary. V/* *//* V/* Calling Sequence:
V/* V/* val - conv(> ; V/* V/* Returns:
//

"val" is the converted value
Zero is returned if no value

V/* *//* V/*
/ A**/
LONG conv() V/*

!****************************/
/* Character temporary
/* Accumulator
/****************************/
/* Zero found so far
/* While c is a digit

VREG BYTE
REG LONG

c;
Vn;

Vn = 0;
while(((c= * Vfmt++) >= ’O’)

S.& (c <= '9'))
n = n*10+c-'0';

//
// Add c to accumulator

/* Back up format pointer to*/
/* character skipped above */
/****************************/

fmt— ;

return(n);
}

Listing F-5. Conv Function

F-9

C Language Programmer's Guide F Sample C Module

^*+**/F u n c t i o n
V/*
/P u t s t t/
V/*
//

Function "_putstr" is used by "sprintf" as the output function
argument to

'

"_printf". A single character is copied to the buffer
at w_ptrst".
Calling Sequence:

V/*
V/*
//
//
V/*
V/*
V_putstr(str,chr);

where Mstr" is a dummy argument necessary because the other output
functions have two arguments.

/*
V/*
V/*
V/*
V/*
// Returns:
//
// (none)
V/*

/**/
VOID

_putstr(str,chr)
REG BYTE
BYTE

//
V/* The output character

/* Dummy argument
/****************************/
/* Output the character
/* Go back
/****************************/

chr;
*str; V

1
*/*_ptrst++ = chr;

return(0); V
1

Listing F-6. Putstr Function

F-10

F Sample C ModuleC Language Programmer's Guide

/A***/
V/*

F u n c t i o nP r t 1 V/*
V/*
V/*

Function "_prtl" converts a LONG binary quantity to decimal ASCII
at the buffer pointed to by "__ptrbf".
Calling Sequence:

//
*//*a

V/*
//
//
V/* _prtl{n);
V/*
// where "n" is the value to be converted.
//
V/* Returns:
//
V/* (none)
//

/* VVOID _prtl(n)
REG BYTE *//* Conversion input

/****************************/
/* store digits here
/* Points to last digit
/**********•******************j
/* Initialize digit pointer */
/****************************/
/* Fix

n;

Vdigs[10];
*dpt;

REG LONG
REG LONG V
dpt = digs;

Vif (n < 0)
V/* up
// sign

[*_ptrbf++ = n

for (; n != 0; n - n/10)
*dpt++ = n%10;

-n;} Vstuff
/****************************/
/* Divide by 10 till zero
/* Store digit (reverse ord)*/
/****************************/
/* Zero value?
/* Yes, store 1 zero digit */
/****************************/
/* Now convert to ASCII

/*

*/

Vif (dpt == digs)
*dpt++ = 0;

while (dpt != digs) V
•: /* V

/* Decrement pointer
/* Note digits are negative 1*/

/****************************/

V—dpt;
*_ptrbf++ = '0' + *dpt;

! /* V
1

Listing F-7. _Prtl Function

End of Appendix F

F-ll

Index

#define, 2-3, 3-3, E-3
#include, 1-2, E-l
START, 2-15

brk function, 3-8BSS, E-5
buffering, 4-1, 4-2

A C

abort function, D-l
abs function, 3-5access function, 3-6
allocation directives RASM-86,

5-7
argument passing, 7-3
overlays, 7-4

arithmetic comparison, E-5
ASCII, 1-2
character macros, A-2
characters, 3-15
digit string, 3-7
files, 3-2, 3-23, 3-37, 4-1

ASM-86, 5-1
assembler, 5-1
assembly language, 5-1cross-reference utility

program, 1-1
assembly routine, 2-12, 5-1,5-5, 5-7
calling, 5-2
external, 5-3
public, 5-2

atan function, 3-60
atof function, 3-7
atoi function, 3-7
atol function, 3-7
auto variable macro, 3-3

calling
a C module, 5-3
an assembly routine, 5-2

calloc function, 3-9
carriage return, 3-15, 3-26,

4-1
chaining, 3-17
char, 5-6

keyword, 6-1
character

alphanumeric, 3-15
control, 3-15
conversion, 3-61
data type, 6-1printable, 3-15
punctuation, 3-15
space, 3-15storage, 6-1chmod function, 3-11chown function, 3-11

clearerr function, 3-22
CLEARL.L86, 1-2, 3-1, A-l
CLEARS.L86, 1-2, 3-1, A-l
close function, 3-12
COBJ.TMP, 2-1
code area, 2-14
code generator, 1-2, 1-3

location, 2-4, 2-12
nodes, 2-3, 2-9

code optimizer, 2-9
disable, 2-3

command file, 1-7, 2-22
command line

compiler, 1-5, 2-2
length of, 2-2
overlays, 7-4commas, E-4

comments, E-6
COMMON

combine type RASM-86, 5-7
data segments, 5-8

B

backward reference, 7-5big model
compilation, 2-6
enable, 2-3library, 1-2, 3-1, A-l

binary
data, 3-59
files, 3-2, 3-23, 3-37,
4-1

bit flags, E-5
boolean macro, 3-3
BP register, 5-5

Index-1

s, 3-42, 3-51
u, 3-41, 3-42
x, 3-42, 3-51[, 3-51

conversion specification
printf function, 3-40, 3-41
scanf function, 3-49

cos function, 3-13
CP/M-86, 1-1, 2-15, 3-1, 3-2
CPU, 1-1
creat function, 3-14, 4-1
creata function, 3-14, 4-1
creatb function, 3-14, 4-1
cross-reference utility

assembly language, 1-1
CTEMP.TOK, 2-1, 2-3, 2-9,

2-12, 2-16
ctype functions, 3-15
CTYPE.H, 1-2, 3-61

common
attribute, 5-6
segment, D-l

compatibility with UNIX V7,
3-1

compiler, 1-2, 1-5, 2-20
code generator, 1-2, 1-3
command line, 1-5, 2-2, 2-3,
B-l

default filetype, 2-21
different versions, 1-5,
1-7, 2-22, D-l

end of compilation, 1-5error messages, 1-3
full configuration, 2-1
information message display
level, 2-3

information messages, 2-3
listing/disassembly file

merge utility, 2-13
memory allocation message,
2-14, 2-21

minimum configuration, 1-3
operation, 2-1
options, 2-2
parser, 1-2, 1-3
preprocessor, 1-2, 1-3
sign-on banner, 1-5, 2-21
stopping, 2-2
supervisory module, 1-2
suppress sign-on message,
2-3

work disk, 2-20
completion code, 3-18
components, 1-1
CON:, 2-8, 2-10, 4-3
console device, 2-8, 2-10,

3-62, 4-3
constant names, E-2
constants, E-4
control characters, 3-15
control-Z, 3-26, 4-1
conversion

functions, 3-7
precision, 6-4

conversion character
%, 3-41, 3-42, 3-51
c, 3-42, 3-51
d, 3-42, 3-51
e, 3-42, 3-51
f, 3-42, 3-51
9, 3-42
o, 3-42, 3-51

D

dash, 2-2
data

buffering, 4-1
control structure, 4-2
group, 5-8
segment, 5-6
structures, E-l
types, 6-1

default
buffer, 7-5
filetype compiler, 2-21
number of code generator
nodes, 2-9

object file name, 1-6, 2-5
default drive
compiler, 2-1
overlays, 7-4
system library, 2-22

define, 2-3, 2-6
dgroup, 5-8
DI register, 5-4
directory system library

functions, 3-4
disk

file, 4-1
space, 1-1

double, 5-3, 5-6
double-precision

floating-point, 6-3
data type, 6-1
storage, 6-3

Index-2

downward reference, 7-5
DRC.CMD, 1-2, 1-3, 2-1
DRC.ERR, 1-2, 2-1, 2-14
DRC860.CMD, 1-2, 1-3, 2-1,

2-4, 2-9, 2-12, 2-16location, 2-4, 2-13
DRC861.CMD, 1-2, 1-3, 2-1, 2-4

location, 2-4, 2-13
DRC862.CMD, 1-2, 1-3, 2-1,

2-4, 2-10, 2-13
location, 2-4, 2-13

DRCRPP.CMD, 1-2, 2-9, 2-16

exp function, 3-19
exponent, 6-3
expressions, E-4
extern
data, 2-13
explicit, 2-13implicit, 2-13
keyword, 5-2, 5-6, D-l-

external
area, 2-13
data access, 5-6
declarations, 5-2names, 5-1significant characters, 5-1EXTRN directive RASM-86, 5-3

E

E2BIG, 3-38
EACCES, 3-38
EBADF, 3-38
EFBIG, 3-39
EINVAL, 3-38
EIO, 3-38
end of compilation, 1-5
end-of-file, 3-22, 4-1

byte level, 4-1
ENFILE, 3-38
ENODSPC, 3-39
ENOENT, 3-38
ENOMEN, 3-38
ENOSPC, 3-39ENOTTY, 3-38
entry points, 3-2, 7-5
entry/exit protocol, 5-4
ENVAL, 3-38
EROFS, 3-39
errno external variable, 3-38
ERRNO.H, 1-2
error
display level, 2-4, 2-11
message file, 1-2, 1-3
message text, 2-14
messages, 1-3, 1-7, 2-4,
2-13, 2-14, C-l

number, 1-3, 2-14, C-l
operating system, 3-38
reports, 2-13, C-l
warning messages, 2-4,
2-13, 2-14, C-l

execl function, 3-17
executable
components, 1-1
program, 1-3, 1-7,
2-15, 2-22

exit and _exit functions, 3-18

F

fabs function, 3-20
FAR RASM-86, 5-3
faster compilation, 2-3, 2-8,

2-8
fclose function, 3-21
fdopen function, 3-23
feof function, 3-22
ferror function, 3-22
fflush function, 3-21fgetc function, 3-27
fgets function, 3-31
file access

regular, 4-1
stream, 4-2

file descriptor, 3-22, 3-33,
4-1

filename temporary, 3-36
fileno function, 3-22files, 4-1

access, 4-1
ASCII, 4-1
binary, 4-1
close, 3-12, 3-21
create, 3-14, 4-1
delete, 3-64
open, 3-23, 4-1
owner ID, 3-11
protection mode, 3-11
standard I/O, 4-3

filetype
.C, 1-5, 2-21
•CMD, 1-7, 2-16, 2-23.OBJ, 1-7, 2-22
OVR, 7-4float, 5-3, 5-6

Index-3

floating-point, 6-1, 6-3
arithmetic, 2-7, 6-3
functions, A-3fopen function, 3-23

for-loop, 1-5form-feed, 3-15
format string, 3-40

scanf function, 3-49
formatting output, 3-40
forward reference, 7-5
fprintf function, 3-40
fputc function, 3-43
fputs function, 3-45
fread function, 3-25
free function, 3-9
freopen function, 3-23
fscanf function, 3-49
fseek function, 3-26
ftell function, 3-26
function
character classification,
3-15

directory, 3-4
error, 3-22
external, 5-7
names, 3-4
reference, 3-2
return values, 3-2, 3-6
system library, 3-4

fwrite function, 3-25

I

include file, 1-2, 2-3, 2-17,
3-3, 3-38

nesting, E-l
index function, 3-32
indirection operator, 2-14
initialized data, E-5
input file LINK-86, 2-22
INPUT option LINK-86, 2-5,

2-22
input/output, 2-16, 4-1
int, 5-6keyword, 6-2
integer
data type, 6-1
long, 6-2
short, 6-2
storage, 6-2
unsigned, 6-2

Intel
8087, 2-3
ASM-86, 5-1
object file format, 2-1

interlist
display, 1-3, 2-10
generate, 2-3, 2-10
option, 1-3, 2-10

intermodule communication, E-l
internal data representation,

6-1
isalnum function, 3-15
isalpha function, 3-15
isascii function, 3-15
isatty function, 3-33
iscntrl function, 3-15
isdigit function, 3-15
islower function, 3-15
isprint function, 3-15
ispunct function, 3-15
isspace function, 3-15
isupper function, 3-15

G

getc function, 3-27
getchar function, 3-27
getl function, 3-27
getpass function, 3-29
getpid function, 3-30
gets function, 3-31
getw function, 3-27
global

data areas, E-l
variable macro, 3-3

GROUP directive RASM-86, 5-8 J

H jump optimizer disable, 2-3,
2-8

jump routine nonlocal, 1-2,
3-53

hardware stack, 5-3
header file, E-l
heap
extension, 3-8
management, 3-9

K

Kernighan, D-l

Index-4

ML

machine support subroutines,
2-15

macro, 2-16
abs function, 3-5
BOOLEAN, 3-3
BYTE, 3-3
ctype functions, 3-16
DEFAULT, 3-3
definition, 1-2, 4-3, E-2
EXTERN, 3-3
getc function, 3-27
GLOBAL, 3-3
instructions, 2-16
LOCAL, 3-3
LONG, 3-3
MLOCAL, 3-3
putc function, 3-43
REG, 3-3
toascii function, 3-61
tolower function, 3-61
toupper function, 3-61
UBYTE, 3-3
ULONG, 3-3
UWORD, 3-3
VOID, 3-3
WORD, 3-3

malloc function, 3-9
mantissa, 6-3
MAP option LINK-86, 2-15
masking, E-4
math coprocessor, 2-3
memory
allocation message, 1-5, 1-7
compiler, 2-13, 2-20
LINK-86, 2-22
management functions, 3-9,

A-3
models, 1-2
requirements, 1-1

menu-driven programs, 7-1
message display level

compiler, 2-11
microprocessor
68000, 3-59, D-l
8086/8088, 1-1, 3-59
8087, 2-3, 2-7

minimum
C system, 1-4
configuration compiler, 1-3

mktemp function, 3-36
modular programs, E-l
module, E-l

library, 1-1, 3-1
subroutines, 3-1
utility, 1-2

line number, 2-14
line-feed, 3-15, 4-1
LINK-86, 2-4, 2-16
automatic invocation, 2-3,
2-5

input file, 2-5
INPUT option, 2-5
location, 2-4, 2-13
MAP option, 2-16
memory allocation message,
2-22

SEARCH option, 2-5, 2-16,
2-23

sign-on banner, 2-22
sign-on message, 1-7

LINK86.CMD location, 2-13
linkage editor, 1-2
list
device, 2-11, 4-3
generate, 2-3, 2-8

listing/disassembly file-merge
utility, 1-2, 1-3, 2-4,
2-10

literal character strings,
2-13

local
buffering, 4-2
variable, 5-7, E-6

log function, 3-34
loglO function, 3-34
long, 5-3, 5-6
divide, 2-15integer storage, 6-2
keyword, 6-2
shift, 2-15

longjump function, 3-53
low-level I/O, 4-1
lowercase
compiler, 3-4
C programs, 5-1
function names, 3-4

lseek function, 3-35
LST:, 2-8, 2-10, 4-3

Index-5

overlay, 7-1, 7-5
entry point, 7-4
manager, 7-5
nesting, 7-5

OVR file, 7-4

N

names
constant, E-2
variable, E-2

NEAR RASM-86, 5-3
nested overlays, 7-2
nodes code generator, 2-9
nonlocal jump routine, 1-2,

3-53
P

parameters
external, 5-7
remove from stack, 5-5

parser, 1-2, 1-3
location, 2-4, 2-12

passing arguments, 7-3
password, 3-29
percent sign

printf function, 3-41
scanf function, 3-50

peripheral device, 4-1, 4-3
perror function, 1-2, 3-38
pointer
arithmetic, E-4
scanf function, 3-49
stream, 4-2
to static location, 5-5

PORTAB.H, 1-2,3-3, 4-3
portability, 1-2, 3-1, 3-2,

4-3, 5-1, E-l, E-2, E-4,
E-7

macros, 3-3
precision conversion, 6-4preprocessor, 1-2, 1-3, 2-13
execute alone, 2-3, 2-9,

2-16
location, 2-4

printer, 4-3
printf function, 1-5, 3-40
problems, 1-7
procedure definitions, E-6
process ID, 3-30
program
area, 1-1
listing, 2-3, 2-8

Programmer's Utilities Guide,
1-7, 2-5, 2-16, 2-23, 5-1,
5-3, 5-7, 5-8

programming style, E-l
PUBLIC directive RASM-86,

5-2, 5-7
public C module, 5-3
putc function, 3-43
putchar function, 3-43
putl function, 3-43
puts function, 3-45
putw function, 3-43

O

object
program, 2-22record, 2-5, 2-22

object file
default name, 1-6
format, 2-1
specify name for, 1-6, 2-3,2-9, 2-21, 2-23open function, 3-37, 4-1

opena function, 3-37, 4-1
openb function, 3-37, 4-1
operator

AND, E-4
op=, D-l
OR, E-4
sizeof, E-5

option letter, 2-2
option switch, 2-2, B-l-0, 2-4, 2-122-4, 2-12-2, 2-4, 2-13-3, 2-4, 2-13

2-3, 2-5, 2-13
-1/

-a,-b, 2-3,-d, 2-3,-f, 2-3,-h, 2-3,-i, 2-3,-j, 2-3,-1, 2-3,-n, 2-3,
2-3,2-3,
2-3,
2-3,
2-3,
2-4,
2-4,
2-4,

2-6
2-6
2-7
2-72-8
2-8
2-8
2-8
2-9, 2-20, 2-232-9, 2-16-o,-P/

-q/

-r,
-vf-w,
“X,
“Z,

output formatting, 3-40
output/input, 4-1

2-9
2-10, 2-13
2-10, 2-20
2-11, 2-14
2-11
2-12

r

Index-6

sQ

qsort function / 3-46 sample C
module, F-l
programs, 1-2

SAMPLE.C, 1-2, 1-4, 1-5, 1-6
SAMPLE.CMD, 1-7
SAMPLE.OBJ, 1-6
sbrk function, 3-8
scanf function, 3-49
screen editing, E-7
SEARCH option LINK-86, 2-5,

2-16, 2-22
segment, 5-7

name, 5-6
registers, 2-15

setbuf function, 3-52
setjump function, 3-53
SETJUMP.H, 1-2
short, 5-6

integer storage, 6-2
keyword, 6-2

SI register, 5-4
side effects arguments, 3-5,3-16, 3-43, 3-61
sign-on banner
compiler, 1-5, 2-21
LINK-86, 2-22

sign-on message
LINK-86, 1-7
suppress for compiler, 2-3

signal function, D-l
significant characters, 5-1
sin function, 3-13
single-byte I/O, 4-2
single-precision

floating-point, 6-3
data type, 6-1
storage, 6-3

sizeof operator, E-5
small model

R

R.CMD, 1-2, 1-3
rand function, 3-47
random number generator, 3-47
RASM-86, 5-1, 5-2, 5-7
allocation directives, 5-7
COMMON combine type, 5-7
EXTRN directive, 5-3FAR label, 5-3
GROUP directive, 5-8NEAR label, 5-3PUBLIC directive, 5-2, 5-7
uppercase, 5-1

read function, 3-48
READ.ME, 1-2
realloc function, 3-9
redirection, 2-16, 4-3I/O, 4-3
register variable macro, 3-3
register

BP, 5-5
DI, 5-4
restore, 2-12SI, 5-4
SP, 5-5

regular file, 4-1
access, 4-1
close, 3-12
functions, 4-2, A-2
offset position, 3-35open, 3-37
output to, 3-65
read from, 3-48

relocatable
assembler, 1-2, 1-5
object file, 1-6, 5-1
object program, 2-22

reserved letters, 2-2
restore registers, 2-4, 2-12
return values, 5-6
reverse
assembly, 2-3
preprocessor, 1-2,
2-9, 2-16

rewind function, 3-26
rindex function, 3-32
Ritchie, D-l
root module, 7-4, 7-5
run-time requirements, 1-1

compilation, 1-6, 2-23
library, 1-2, 1-6, 2-5, 3-1,

A-lSoftware Performance Report,
2-24

sorting routine, 3-46
source

file, 2-15program, 1-5, 2-1
SP register, 5-5
space, 3-15

array allocation, 3-9
option switches, 2-2

Index-7

sprintf function, 3-40
sqrt function, 3-54
srand function, 3-47
sscanf function, 3-49stack, 5-3, 5-4, 5-5

initialize pointer, 2-15,
5-5stand-alone programs, 2-15

standard
error file, 4-3
files, 4-3
input file, 4-3I/O, 3-3, 4-1, 4-3
input read, 3-49output file, 4-3start-up routine, 1-2, 2-15

STARTUP.A86, 1-2, 2-15
static
data, 5-5
variables, E-5

stderr, 4-3
stdin, 4-3
STDIO.H, 1-2, 3-3, 3-5, 4-3stdout, 4-3
storage class
declarations, 3-2, 3-3
definitions, E-3

strcat function, 3-55strcmp function, 3-56
strcpy function, 3-57stream file, 4-1

access, 4-2
close, 3-21
control structure, 3-23, 4-2
functions, 4-2, A-2
input from, 3-27open, 3-23
output to, 3-40, 3-43, 3-45pointer, 4-2
read from, 3-25, 3-31, 3-49
read/write pointer, 3-26
write to, 3-25

string variables, E-4
string
comparison, 3-56
constant, 5-5, E-5
concatenate, 3-55
copy, 3-57
functions, A-2
length, 3-58
variables, E-4

strlen function, 3-58
strncat function, 3-55
strncmp function, 3-56
strncpy function, 3-57

subroutine libraries, 1-2
supervisory module, 1-2
swab function, 3-59
symbol table save space, 2-3,

2-9
symbolic
constants, E-l
names, 3-38

syntax errors, 2-13
system call
CP/M-86, 3-38
UNIX, 3-1

system library, 1-1, 1-2, 3-1,A-l
big model, 1-2functions, 3-4
small model, 1-2, 1-6
underscore, 3-2, 5-1, A-l

system requirements, 1-1
T

tab, 3-15
tan function, 3-60
Technical Support, 2-24
tell function, 3-35
temporary
destination, 2-4, 2-12
filename, 3-36
files, 1-1, 2-1, 2-12, 2-16
space, 1-1, 2-1

terminal, 3-62, 4-3
test programs, 1-2
TEST.C, 1-2, 2-20
TESTBIG.CMD, 2-22, 2-23
toascii function, 3-61tolower function, 3-61
toupper function, 3-61trouble-shooting, 1-7, 2-23ttyname function, 3-62
two's complement, 6-2
type definitions, E-3
typedef, E-3
U

underscore, 5-1, A-l
system library, 3-2, 5-1

ungetc function, 3-63
uninitialized data, E-5
UNIX, 4-3, D-l
C functions, 3-1, 3-2
system calls, 3-1
V7 compatibility, 3-1, 3-38unlink function, 3-64

Index-8

unsigned keyword, 6-2uppercase, 5-1
compiler, 3-4

upward reference, 7-5
V

variable, E-l
names, E-2
type declarations, 3-3
types, E-3

W

warning messages, 2-13, 2-14,white space characters, 3-15word boundary, 3-9
work disk create, 2-20write function, 3-65
X

XREF-86, 1-1
Z

zero padding, 6-4

Index-9

NOTES

NOTES

NOTES

This page added for scan notes.
-scanned @ 150dpi 6.62in w by 8.5 in h
in color, original document.

-omitted blank pages.
-omitted DRI reprint of 'The C Program-
ming Language' by K£R, which is the
first half of the original documentation
but a separate manual.
-since DRI C follows this version, it is
pre-ansi C.
-each page scanned into a separate JPEG
files, 188 total, front cover to rear.

This effort is in a memorial to:

Tim Olmstead WB5PFJ

Faith is the substance of things hoped
for.'

Reader Comment Card
We welcome your comments and suggestions.They help us provide you with better
product documentation.

Date

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

C Language Programmer’s Guide
for the CP/ M-86® Family of Operating Systems
2nd Edition Oct. 1983
3049-2023-002

COMMENTS AND SUGGESTIONS BECOME THE PROPERTY OF DIGITAL RESEARCH.

)V

From:
NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

/

B U S I N E S S R E P L Y M A I L
FIRST CLASS / PERMIT NO. 182 / PACIFIC GROVE. CA

P O S T A G E W I L L B E P A I D B Y A D D R E S S E E

m DIGITALRESEARCH
Attn: Publications Production
P.O. BOX 579
PACIFIC GROVE, CA 93950-9987

II.I.I...I. I .II.. . I . I..I.I. .I..I.I...I...IIII I I I I I

1

4

%

3049-2023-002

