1
All Information Presented Here is Proprietary to Digital Research

CB-80 ™ L anguage Reference Manual

By

Digital Research

P.O. Box 579

160 Central Avenue
Pacific Grove, CA 93950
(408) 649-3896

TWX 910 360 5001

All Rights Reserved

2

All Information Presented Here is Proprietary to Digital Research

3

All Information Presented Here is Proprietary to Digital Research

COPYRIGHT

Copyright (g) 1982 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or tranglated 'into any language or
computer language, in any form or by any means,

el ectronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M and CBASIC areregistered trademarks of Digital
Research. CB-80, CP/NET, LK-80, MP/M, MP/M-80,
RMAC, and SID are trademarks of Digital Research.
Z80 is aregistered trademark of Zilog, Inc.

The "CB-80 Language Reference Manua" was prepared
using the Digital Research TEX Text Formatter and
printed in the United States of America by

Commercial Press/Monterey.

Second Printing: March 1982

4

All Information Presented Here is Proprietary to Digital Research

CB-80 ™ Language Reference Manual 1
... 1

COPYRIGHT .. e e e 3

DISCLAIMER e 3

TRADEMARKS. .. 3
... 8
FOreWOrd. . ..o e 9
... 9
NOTICEOFRESTRICTIONS:t 10

IntroductioNnto CB-80. 10
L11CB-80 Character Set. ... e 10

12 ldentifiersand Reserved Words oo 11

12 ldentifiersand ReservedWords oot 12

L3 CONSaNtS. . ..ot e e 13

14 ReEMaArKS . .. 17
LONOtAION. . ..t e 19
SEClION 2 . o ot e 20

2.1 CB-80 SatEmMENtS. . .ot e 20
22Compiler DIreCtiVESo 25

221 Listing Control DIrectivesot 25

2.2.2 %INCLUDEDiIrectiveo 26

Endof Section. 28

SEClION 3. o e e 28
SINUMEricDatao 28

B2StNg Datao 29
B3LabE Dala. . ..t e 30

3.4 DalaStrUCIUIES . . . oo e e 30

35 Declarations 32
.. 32

3.6 Default Declarations. ii i 35

3.7 DATA Statements. e 35
.. 36

3.8 IdentifierUsage. 37

SEClION 4 . o o 38

User DEfiNed FUNCLIONS e e e et e e e 38
4.1 Introduction to User Defined Functions. 38

4.2 SingleLineFunctions. 39

43 MultipleLineFunctions 41

4.4 Scopeof Variables i 44

4.5 Public and External Functions 46

4.6 Linkage With Assembly LanguageRoutines 47

5

All Information Presented Here is Proprietary to Digital Research

SEClION S . o 48
Expressionsand AsSignments. 438
5.A0pEaNdS. . ..o 49
S.2 0PEIaLOrS. . . o ot 52
Table5-1. Operators. . .. oo oo 52

521 Logical Operators.cvvv et 54
Table5-2. Relational Operators, 55

5.2.3 Arithmetic Operators. oo e 56
524 ExpressonOverflow 57
5.3 Assignment Statements. 58
54 Evaluation of EXpressions. 60
55Mixed MOde EXPressions.o oo v 62
SECHION B . . ot e 63
B.LINUMENCFUNCIONSo e 63
6.1.1 TheABSFunction.ot 63
6.1.2TheATNFuUnction.c i, 64
6.1.3TheCOSFuUNCtion.t 64
6.1.4TheEXPFuUNction. 64
6.1.5TheFLOATFunction ..., 65

6.1.6 TheINT and INTSFunctions 65
6.1.7TheLOGFuUNction. 65
B.LINUMENCFUNCIONSo e 65
6.1.8TheMOD FuNctionccoiiiiiii .. 65
6.1.9TheSGN Function. 66

6.1.10 TheSIN Function. 66

6.1.11 TheSQRFunction., 66
6.1.12TheTAN Function. 66
B.LINUMENCFUNCIONSo e e 67
B6.2SNG FUNCLIONSo 67
6.21The ASCFuUNCtion. ...t 67
6.2.2TheCHRSFunction. 67
6.23TheLEFT$Function........... 67
B6.2StrNGFUNCLIONS 68
6.24TheLENFunction.......... 68
6.25TheMATCHFuUNction., 68
Table6-1. Pattern Characters.o ii it 69

6.26 TheMID$Function. i, 69

6.2.7 TheRIGHTSrunctionccoiiiiinnnnn.. 70
6.28TheSTRSFuUNCtioNot 71
6.29TheUCASBSFunction 71

6.3 Miscallaneous FUNCLIONS. 72

6

All Information Presented Here is Proprietary to Digital Research

6.34TheFREFunction 73
6.35TheNFREFunction. 73

6.3.6 TheSADD Function ..., 74

6.3.7 TheVARPTRFuUnction.vviinnnn... 74

7 1o 0 74
T.1GOTO StaemMENtS. . .ot e e 75

6010 LAM, . . 75

7.3 FORLOOPS . .. oo 79
.. 79
TAWHILE LOOPS. . . . oo 84
75 GOSUB Statementsttt e e 86
7.6 CALL StatementSt e e e 87
.. 88

1.7 RETURN Statements oot e 89
.. 89

7.8 ON Statements i e i 91
7TO90ONERROR Statementso oo e 93
.. 94
7I0STOP Statements e e 95

711 CHAIN Statements.o e e e 95
SEClION B . o e 97
BLINPUT Statementst e e e 97

8.2 CONSOLE and LPRINTER Statements. 101

8.3 DETACH Statements oo i i 102
... 102

84 PRINT Statements ... 102

B8O POKE StalementS. . ..o oo e e 106
... 106

8.6 OUT Statements oo v e 107

8.7 READ Statements. oo 107
... 107

8.9 RANDOMIZE Statementsccovie .. 109

8.10 Input/Output Predefined Functions. 110

8.10.1 The ATTACHFunction 110

8.10.2 The CONSTAT% Function 110

8.10.3 The CONCHAR%Y Function. 110

8.10.4 TheINKEY Function 111

8.10.5 ThelINPFunction........................ 111

8.10.6 ThePEEK Function 112
8.10.7ThePOSFunction 112

8.10.8TheRND Function.c ... 113

7

All Information Presented Here is Proprietary to Digital Research

8.109TheTABFuUNCtion. ...t 113

SEClION O . 114
QA FIEeDEsCIPLON. . ..ot 114
9.20PEN and CREATE Statementst 115

9.3 File AccessingMethods 119
931ReadingFiles. 119
... 119
932WritingtoFiles 123
... 123

94 Terninating AccesstoFiles. i 126

9.5 File EXCeption ProCcessiNg. . . .o oo v e e 127

9.6 FilePredefined Functions. i, 129
9.6.1TheGET FUNCliON.t 129
9.6.2TheLOCK Functioncoiiuiuinnen.. 130
9.6.3TheRENAME Function 130
9.64TheSIZEFunction.c. ... 130

9.6.5The UNLOCK Function., 131

SECtiON 10 . . .o 132
10.2USING SHNGS. .« o v e et e e e e e et 132
103StringFieldso 139
105PrintUsingtoFles. ... 143
SECtION AL . . 144
Compiler Operationt 145
111 CompilingaProgramt 145
11.2Command LineDirectivest 146
Section 12 LK-80 . .. 150
121 Operation of LK-80. 151
122LinkingModules. 151

12.3 Linking MultipleRF.L Files............ 153
124 ProducingOverlays. 155
125 LK-80TOggles . ..o 157
126 LK-80 Error MeSSages . . . oo o v it e e e 157
12.7 Linking With Assembly Language.ot 159
12.8Passing Parametersot 159
12.8.1 Integer Parameters. 159

12.82Read Parameters. 160

1283 StringParameters. 161

12.9 Returning ValuestoCB-80. 162
12.10 Dynamic Storage Allocation Routines 162
1211 ArithmetiCROULINESo e 163

Appendix A CB-80 Reserved WoOrds 163

8

All Information Presented Here is Proprietary to Digital Research

... 164
Appendix B Collected Syntax Diagramst 165
Appendix C Compiler Error MESSages.o v oo 182

Table C-2. Compilation Error Messages. 183

APPENdiX D, .o 191
... 195
APPENAIX E . .o 196
Table E-1. Implementation Dependent Values. 196

9
All Information Presented Here is Proprietary to Digital Research
Foreword

CB-80(TM) increases the performance of commercia applications
software on Z800 and 8080 based microcomputer systems. CB-80
consists of the CB-80 compiler, the CB-80 library and alink editor,
LK-8 0 T.M. . With CB-80, you can compile statements into a module
consisting of relocatable machine instructions. Y ou can link a
number of separately compiled modulesinto a single relocatable
module with LK-80. A relocatable module linked with the CB-80
library by LK-80 produces an executable program. Y ou can also
generate overlays to alow one program to chain to another. These
features ensure that very large programs can be compiled and that
performance does not degrade when applications become large.
Additional CB-80 features support operation in a multi-user
enviornment.

CB-80 maintains compatibility with CBASICS. This allows you

to take existing applications and convert them to CB-80. The result
is much faster execution and more flexibility when using assembly
language.

Thismanual is areference guide to CB-80. It defines the

structure, functions, and statements of the CB-80 language and then
describes the operation of the compiler and the linker. This manual
does not teach programming principles and in general, assumes that
you are familiar with programming in one or more high level
languages. If you are familiar with CBASIC scan this manual for new
statements that have been added to CB-80. Read Sections 4.5, 4.6,
7.11, 11, and 12 in detail.

CB-80 and associated programs are distributed by Digital
Research or by dealers licensed by Digital Research to distribute
CB-80. A diskette containing an authorized copy of CB-80 has a
label like the one shown below.

10

All Information Presented Here is Proprietary to Digital Research

NOTICE OF RESTRICTIONS
All software on this diskette is copyrighted and may be used and copied only under the
terms of the Digital Research, Inc. End User License Agreement.
This diskette is serialized and may be used in CB-80 only by the registered user, and may not be
resold or transferred without the consent of Digital Research, Inc., P.O. Box 579, Pacific Grove,
Cdlifornia

Disassembly of code is prohibited. Unauthorized Reproduction, transfer, or use of this material
may be a criminal offense under Federal and/or State law.
Copyright Digital Research Inc 1981

I ntroduction to CB-80

A CB-80 source program is atext f ile consisting of ASCII
characters. Groups of characters form one of the following program
primitives: identifiers, reserved words, constants, special

characters, or remarks. Section 1. 1 defines* the CB-80 character set
that forms these primitives. The following sections describe each
program primitive. Section 1.5 explains the notation this manual
usesto illustrate each statement in the language.

1.1 CB-80 Char acter Set

Any ASCII character can appear in a CB-80 program. The CB-80
language uses the alphanumeric characters and the following special
characters:

Y ou can insert any number of blanks between program primitives.
Except in a string constant (discussed in Section 1.3) , a
consecutive group of blanksis treated as one blank. For example
the following primitives are the same.

PRINT X
and

PRINT X

A physical line of source codeis “terminated” by the end of line
character which is a carriage return followed by aline-feed.

1.2

11

All Information Presented Here is Proprietary to Digital Research

Y ou can use tab characters in source programs; CB-80 treats
them as blank characters. In listings, CB-80 expands tabs to the
next column that is a multiple of eight.

Except in string constants, CB-80 converts lower-case
a phabetic characters to the corresponding upper-case al phabetic
characters. The following primitives are the same:

PRINT
and

print

The backslash character (\) has a special meaning in CB-80.
Unlessit is contained in a string constant, explained in Section

1.3, the backslash signifies that the next line is a continuation of
the current line. Thisallows aline oriented language like BASIC
to have statements extend over many physical lines. CB-80 ignores
any characters following the backslash on the same physical line.
(Section 2 details the use of continuation characters.)

|dentifiers and Reserved Words

Anidentifier isaprogram primitive that is a group of

a phanumeric characters and decimal points. Identifiers represent
program elements, defined by the programmer, such as variables,
function names and labels. Subsequent sections explain the use of
these elements. In general, the same identifier cannot be used for
two different elements. Reserved words are identifiers that have
specific meaning in the CB-80 language. In the remainder of this
manual, the term identifier refers to identifiers other than
reserved words or compiler directives. Appendix A contains alist
of CB-80 reserved words.

Thefirst character in an identifier must be alphabetic, a

guestion mark (?), or a percent sign (%). CB-80 permits a question
mark asthe first letter of an identifier to allow accessto a

routine in the CB-80 run-time library. Identifiers that start with

12

All Information Presented Here is Proprietary to Digital Research

apercent sign are called compiler directives. (Section 2 explains
these directives. Appendix A containsalist of all compiler
directives.) Identifiers can end with a percent sign or adollar
sign.

CB-80 aways converts lower-case lettersin an identifier to
the corresponding upper-case letters.

Identifiers can be of any length. CB-80 allows long

identifiers so that you can choose names that have meaning. This
makes programs easier to develop and maintain. The amount of space
CB-80 requires during compilation of a program is related to the
length of identifier names. If you have long identifiers, you might
need more memory space to compile your program. However, the size
of the identifiers does not affect the amount of executable code CB

80 produces.

A specific implementation of CB-80 might limit the number of
significant charactersin an identifier. CB-80 does not set this
limit to less than 31 characters. Linkage editors might truncate
names of functions that are public or externa to less than 31
characters. If an identifier istruncated due to an implementation
length restriction, aterminating dollar sign or percent sign is not
retained. This could change the meaning of the identifier. (See
Appendix E for current implementation limits.)

Y ou can imbed decimal pointsin an identifier to enhance
readability. Y ou can use any number of decimal points, and they can
appear asthe last character of the identifier. For example:

MASTER. ACCOUNT. NUMBER.

12 | dentifiersand Reserved Words

FILE.NUMBER%

The decimal point is part of an identifier and must be present
in al referencesto that identifier. Therefore, the identifiers:

INV.NO

13

All Information Presented Here is Proprietary to Digital Research

and

INVNO

are different identifiers.

The following list showsvalid identifiers:

AMOUNT
FN.ANGLE
PAYMENT.
DUE. DATE
ORDER.QTY
INDEX%

1%

DATES$
ACCOUNT.101
income.source.code Al.B2.C3.
?GETS |

The following identifiers are invalid:

A3$B CB-80only alowsadollar sign at the end of
the identifier.

SIN SIN isareserved word (see Appendix A).

71) Valididentifiers must start with aletter
(17K isvalid).

A?B Question marks can only appear at the
beginning of an identifier.

$ Valid identifiers must start with aletter or

A.B Decimal points cannot start an identifier.

A B C Spaces cannot appear in identifiers.

1.3 Constants

14

All Information Presented Here is Proprietary to Digital Research

A constant is a program primitive that does not vary during the
execution of a program. There are two types of constants: string and numeric.

A string constant is a group of characters enclosed within
guotation marks. The maximum number of charactersallowed in a
string constant is implementation dependent (see Appendix E for

current limits) . In all cases, CB-80 permits at least 255
characters.
The compiler treats two consecutive quotation marks within the
string as one quotation mark which is a character in the string.
For example:

"He said ""The time has come™ before he left"

represents the following string constant:

He said "The time has come" before he left

15

All Information Presented Here is Proprietary to Digital Research

The following examples also use imbedded quotation marks:

"thisis a quotation mark

The first example is astring consisting of one quotation mark. The
string constant:

fill isanull string. A null string is a string with a length of zero.

The following are examples of valid string constants:
"Thisisavalid string constant”
"ABC Development Company”
feet
"PAYMENT DUE DATE:
Numeric constants are either integer or real constants.
Integer constants are stored as two byte signed binary integers with
amaximum magnitude of 32767. Real constants are stored as eight

byte binary coded decimal digits. Thefirst byteisthe sign and
exponent; the remaining seven bytes represent the mantissa. Y ou

16

All Information Presented Here is Proprietary to Digital Research
can express real constantsin either decimal or floating point
format. The compiler converts numeric constants to an internal
format.
The following are examples of valid numeric constants:
1 0 32767
5478 12345 21

12.83 1267. 54.0E 01
1.11E-21 0.01E63 1-1.23E+61

A blank can appear following the E in a numeric constant. No other
blanks can be used in a constant.

Numeric constants are always positive. If you append asign to
a constant, CB-80 treats the sign as an unary arithmetic operator.
(See Section 5 for adiscussion of arithmetic operators.)

The following numeric constants are invalid:

3.2E Missing exponent.

1.23E+99 Exponent out of range.

12,734 Commas are not permitted within constants.
0112 Only one decimal point is permitted.

12.34 A blank is not permitted in the number.

If a numeric constant does not contain adecimal point or an
exponent, the compiler treats the constant as an integer unless the
magnitude of the constant exceeds 32767, the maximum magnitude of
CB-80 integers. If the constant exceeds 32767, CB-80 treats the
constant as areal constant. In other words, 30000 is an integer

but 300000 isareal constant. 30000.0 is also areal constant

because it contains a decimal point.

Integer constants can also be expressed as hexadecimal or

binary constants. A binary constant isagroup of O'sand I's
ending in the letter B. Hexadecimal constants consist of a group of
numeric characters and the letters A through F. A hexadecimal
constant ends with the letter H.

17

All Information Presented Here is Proprietary to Digital Research

In binary constants the letter B, and in hexadecimal constants
the letters A through F and the letter H, can be either lower-case
or upper-case. Thefirst character of a hexadecimal constant must
be adigit.

The following list contains examples of valid binary and
hexadecimal constants:

1100b 0101010101B 8000h
7ABCH 7abch 1B
07fffh OOOCH OFfFfH

Oh lllb OABCDH

Unlike decimal integer constants, binary and hexadecimal
constants are not converted to real constants if their magnitude
exceeds 32767. This allows bit patterns up to 16-bits long to be
represented as constants. This means that while CB-80 treats

65535 asarea constant,

OFFFFH isahexadecimal integer constant.

The following binary and hexadecimal constants are invalid:

fa3eh Does not start with adigit.

7ABCD Missing H at end of constant.
OFFFFFH Exceeds the range of integers.
010201b Binary contains digit other than O or 1.
0111 OB Spaces not permitted in constants.
1011,1111 Commanot permitted in constants.

14 Remarks

Y ou can add remarks to a source program to increase the

readability of your program, but the compiler ignores remarks. A

remark starts with the reserved word REMARK or REM, and terminates
with the physical end of the line or with a backslash if the remark
continues to the next line.

Remarks can appear anywhere in the source program with the

18

All Information Presented Here is Proprietary to Digital Research

following restrictions.

A remark aways terminates a statement. (Statements are
described in subsequent sections).

Remarks cannot be imbedded in other program primitives.

* Remarks are not permitted as part of aDATA statement.

I .

(Section 3 explains DATA statements).

CB-80 treats a blank line as aremark. Y ou can use any number
of blank lines within a program. In the example below, the blank
line becomes part of the remark, but the third lineisnot a
continuation of the remark.

REM THISISA REMARK CONTINUED
BUT THISISNOT PART OF THE REMARK

The following examples show valid remarks.

REM Any Characters

REMARK ACCOUNTSPAYABLE

REMARK '\

\PAYROLL

\PROGRAMMED BY TIM SMITH

\LAST MODIFIED 28 JUNE 1981
VERSION 1.03

In the last example, the backslashes indicate that the five
physical lines are one remark. Thus, the backslash has specific
meaning even as part of aremark. A remark cannot contain a
carriage return because a carriage return terminates the remark.
The carriage return is not part of the remark.

19

All Information Presented Here is Proprietary to Digital Research

1.5 Notation
This manual uses syntax diagramsto illustrate the syntax of
each statement in the language. A syntax diagram shows the
permissible constructs for each statement. For example, the syntax
diagram for an identifier is:
~ETTER
?
L-ETTFK
NO M EW-F,
A rectangular box indicates a program element that is further

defined by another syntax diagram. In this example, a syntax
diagram could be drawn to show that aletter isan A, B, C etc.

LETTER | T | -— @ |

s LETTER d - /?#\

NOM BER -J

The circle indicates areserved symbol or token in the
language.

Arrows represent the flow of control that indicates permissible
aternative forms of the program element.

For clarity, program examplesin this manual use upper-case
letters for both reserved words and identifiers. However, you
can also write any of the identifiers or reserved wordsin
lower-case without altering the program.

20

All Information Presented Here is Proprietary to Digital Research

8
CB-80 Reference Manual 15 Notation

Note: the CB-80 Reference Manual is independent of the operating
environment wherever possible. However, when f ilenames must be
shown, CP/M(& filenames are used. Digital Research's CP/M and its
derivatives Mp/MT.M.and CP/NETT.M .are the standard operating systems
for 8-bit microprocessors using CB-80. If you are using CB-80 with

an operating system other than CP/M, file specifications might

differ from those shown in this manual.

End of Section

Section 2
CB-80 Program Structure

Section 1 defines program primitives from which CB-80 programs
are built. This section describes the overall structure of CB-80
programs, which consist of a declaration group followed by a
statement group. Section 2.2 describes compiler directives that
provide information to the compiler during compilation.

2.1 CB-80 Statements
A CB-80 statement consists of an optional statement label and
one or more statements separated by colons. The statement
terminates with the end of a physical source line. With the
exception of some assignment statements, all statements start with a
reserved word.
6-TMT L-AlaE-L- IF6TAI-SMF-NT
56TA-fF-MF-NT

A number of statementsis called a statement group.

21

All Information Presented Here is Proprietary to Digital Research

— STMT LABEL- I 1 [FSTATEMENT

L1 5 STATEMENT

11
CB-80 Reference Manual 2.1 CB-80 Statements

A statement label can be an integer or real constant or an
identifier with a colon appended to the end of the identifier.

) SR STATEMENT

22

All Information Presented Here is Proprietary to Digital Research

IN'TCDN
IN we-

O- f1FA
When you use an identifier for alabel, you cannot useit again
in another context within the program. This means it cannot be used
asavariable or afunction name. (See Section 4 for adiscussion
of local variables and labels within multiple line functions for an
exception to thisrule.)

The following list contains valid statement labels:

100 2300.00 2222

GETRECORD: PROCESS.COMMAND: A:

200E03 100.00 0.001
The following statement labels are invalid:

100H Hexadecimal constants are not permitted.
XYZ Colonismissing.

1#2 Invalid constant; pound sign is not permitted.

stop: Stop is areserved word.

CB-80 Reference Manual 2.1 CB-80 Statements

When an alphanumeric label is referenced, the colon is not part
of the label. (Section 7 explains statements that reference
labels.)

When you use a numeric constant as a label, the characters
making up the label determine the uniqueness of the label, not the
value of the label itself. The labels 100.0 and 100.00 are

different labels even though they have the same numeric value.

23

All Information Presented Here is Proprietary to Digital Research

Section | explains that CB-80 uses the backslash character
as a continuation character to alow statements to extend over many
physical source statement lines. For example:

PRINT X, VY, Z
can be written as:

PRINT

A continuation character causes CB-80 to ignore all characters
beginning with the continuation character and including the first
end of line.

PRINT\ALL THISISIGNORED

X
A continuation character can appear anywhere that a blank can
separate program primitives. Thus, the continuation character can
separate two primitives:

PRINT

X
A continuation character cannot split a primitive. The
following example shows an invalid use of the continuation
character:

PRI\

NT X
CB-80 treats a backslash within a string constant as a
character within the string rather than as a continuation character.
For example:

"AB\CD"

isavalid string constant that contains 5 characters.

24
All Information Presented Here is Proprietary to Digital Research

CB-80 Reference Manual 2.1 CB-80 Statements

Because CB-80 ignores all characters following the continuation
character on the same physical line, the characters following a
continuation character can be used to document a program.

PRINT \ NOW PRINT THE TOTAL
ACCOUNT.TOTAL

A remark terminates a statement. Thus, the statement:

PRINT REMARK NOW PRINT THE TOTAL
ACCOUNT.TOTAL

is not the same statement, and isin fact an incorrect CB-80
statement.

At timesit is necessary to form a group of statements.
Normally, thisis used in conjunction with the |F statement
described in Section 7.2.

The specia character colon indicates that two consecutive
statements are part.,of a statement group. For example:

PRINT X : PRINT Y

To prevent confusion with alabel, the colon must not be
adjacent to an identifier.

All statementsin agroup must be part of onelogical statement
line. This means that if the statement group is spread over
multiple source lines, you must use the continuation character. For
example:

PRINT X
PRINT Y

associates both statements in the same group. But

25
All Information Presented Here is Proprietary to Digital Research

PRINT X
PRINT Y

does not. In this last example, the first lineis a group of two
Statements consisting of a print statement followed by a null
s-atement. The second line is another print statement not part of
the statement group in thefirst line.

A colon allows multiple statements on one line. In conjunction
with the continuation character, the colon allows groups or blocks
of statements to be continued over many physical source lines.

2.2 Compiler Directives

Compiler directives are reserved words that provide information
to the compiler; they are not translated into executable code. The
following sections define the different compiler directives.

All compiler directives begin with a percent sign for
example:

%LIST

There must not be any blanks between the percent sign and the
remainder of the directive. The compiler directive can appear
anywhere within a source line but no other statements can appear on
the same line with the directive. CB-80 ignores any characters on
the same line with the directive unless they are required by the
directive.

Only blanks or tab characters can precede the directive; it
cannot have alabel.

A compiler directive cannot be continued to another line with a
continuation character.

2.2.1 Listing Control Directives

26
All Information Presented Here is Proprietary to Digital Research

There are four compiler directives that affect the format of

the listing product by CB-80: %LIST, %NOLIST, %EJECT, and the %PAGE
directives. Compiler toggles, explained in Section 11, also affect

listings.

The %NOLIST directive stops listing the source file and
interlisting code. The %LIST resumes listing the sourcefile.

%LIST
%NOLIST

The %EJECT directive continues the listing on the top of the

next page. The %EJECT directiveisonly in ef f ect if thelisting is
being directed to the printer. The %EJECT directiveisignored if
%NOLIST isin effect.

%EJECT

The %PAGE directive sets the page length of alisting directed

to the printer. The desired length must be an integer constant
following the %PAGE. The following example sets the page length to
40 lines:

%PAGE 40

2.2.2 % I NCLUDE Directive

The %INCLUDE directive alows source codein adisk fileto be
included into the source program during compilation. The following
directive includes source statements from the file CONDEF.BAS.

%INCLUDE CONDEF

The file CONDEF.BAS isread from the CP/M default drive. The
filetype of the file specification defaultsto "BAS'. However, you
can specify any filetype. For example,. the following directive
includes the file CONDEF.INC into the source program.

27
All Information Presented Here is Proprietary to Digital Research

%INCLUDE CONDEF.INC

Y ou can specify that an include file be read from a drive other
than the default drive. One method is to directly specify the
drive, as shown below.

%INCLUDE D:CONDEF.INC

Another method uses a compiler toggle to read include files from a
drive other than the one containing the source program. (Section
11.2 explains compiler toggles.)

Include files can be nested. The maximum depth of such nesting
isimplementation dependent. (See Appendix E for the current
l[imitations.) Y ou can assume that the maximum allowable depth is
always at least four, however some operating environments limit the
number of f ilesthat can be open at one time. Extensive use of
%INCLUDE files, especially when nested, decreases the speed of
compilation.

The included text isincorporated into the source directly

after the %INCLUDE directive. CB-80 treats the first character of
the included text as the next character in the source program. The
physical line containing the %INCLUDE directive is not a part of the
statement being compiled.

A %INCLUDE directive can "split" a statement.

PRINT \
%INCLUDE RECDEF.INC

If file RECDEF.INC contains the following source line:

NAMES$\
ADDRESS$

the %INCLUDE forms with the following statement:
PRINT \

NAME$
ADDRESS$

28
All Information Presented Here is Proprietary to Digital Research

The statement that is actually compiled is obtained by replacing the
entire source line containing the %INCLUDE directive with all source
linesin the file specified in the directive.

End of Section

17

Section 3
Data Types and Declarations

CB-80 provides a variety of data types to support the

requirements of programmers implementing commercial applications.
There are three kinds of CB-80 data: numeric, string, and label. A
specific data type can be either a constant or a variable.

Constants do not change value during execution of a program, while
variables can assume different values during program execution.

This section explains the properties of CB-80 data items.

3.1 Numeric Data

Numeric data represents arithmetic and logical quantities.

Numeric datafallsinto two classes: integer and real. Integer
guantities are represented as two's complement binary numbers. Each
integer requires two bytes for storage. If you assign an integer a
value outside the defined range of 15 binary digits (-32768 to

32767), the results are undefined.

Integer datais processed more efficiently than real data

because the hardware processes integers directly. In addition,
integers use less memory than real data. Y ou should use integers
whenever possible to decrease execution time and to reduce the
amount of memory used.

The compiler stores real numeric data as packed decimal digits
in an eight byte floating point format. The first byte contains
both the exponent and the sign of the number. The first bit isthe
sign of the number. The remaining 7 bits are-the exponent.

29
All Information Presented Here is Proprietary to Digital Research

The mantissa is seven bytes long and contains 14 digits.
Values are always stored in anormalized format as 4 bit decimal
digits. There are two digits stored in each byte of the mantissa

The dynamic range of real numbersis 1.0E-64 to
9.99999999999999E+62. Both the accuracy and dynamic range of CB-80
numbers are significantly greater than that found in most binary
implementations of real numbers.

19
3.1 Numeric Data
The internal representation CB-80 uses for some real numbersis
shown below:
NUMBER EXPONENT MANTISSA
1.0 41H OOH OCH OOH OOH OOH OOH 10H
-1.0 CIH OOH OOH OOH OOH OOH OOH 10H
0.0123 3FH OOH OOH OOH OOH OOH 23H 10H
0.0 OOH (not significant if exponent byte 0)
largest positive 7FH 99H 99H 99H 99H 99H 99H 99H
number
smallest nonzero 01H OOH OOH OOH OOH OOH OOH 10H

positive number
3.2 String Data

String data consists of variable length strings of characters.

A string can have a maximum length of 32767 bytes. Space for string
variablesis alocated dynamically and released when the string is

no longer required.

The first two bytes of a string represent the length of the

string. The first byte of the length is the high-order byte and the
second byte is the low-order byte. Thisis contrary to the normal
storage of sixteen bit quantitiesin 8080 microprocessors. The
string "SAMPLE" is stored internally in eight bytes:

LENGTH BODY OF STRING

30

All Information Presented Here is Proprietary to Digital Research

OOH 06H 53H 41H 4DH 50H 4CH 45H

The system uses the left most bit (bit 7) of the first byte of

the length to recover temporary strings. This bit must be ignored
when accessing the string length. Thus, the string length is
actually the low-order 15 bits of the first two bytes of a string

3.3 Label Data

20

34

Labels reference statements and functions and are aways
constants. Section 3 explains statement labels; Section 4 explains
functions,

3.3 Labdl Data

Labels within the main executable block of a program must be
unigue. All labels within afunction (Section 4) must also be
unigue, but alabel within afunction can be the same asalabel in
another function or the main executable block.

Data Structures

CB-80 supports two data structures: ssimple variables and
arrays. Simple variables are single values associated with a
variable name. Simple variables can be of three types: integer,
real, or string. For example, the following identifiers represent
simple variables:

AMOUNT PAYMENT.DUE.DATE$ FRST.FLAG%

INDEX% ANGLE I

Integers are stored in two bytes of memory; real variables
require eight bytes of storage. Strings are assigned two bytes of
permanent storage that store the address of the dynamically
allocated string.

Arrays are the other data structure CB-80 provides. An array

31
All Information Presented Here is Proprietary to Digital Research

associates a group of simple variables to one variable name. A
particular element isidentified by providing subscripts to select
one variable in the array. In the following example, MATRIX isthe
array name. The values in parentheses are subscripts selecting a
specific element of MATRIX. MATRIX isatwo dimensional array
because there are two subscripts.

MATRIX(2,3)

Arrays can have any number of dimensions, and the value of
dimensions can be expressions determined during the execution of the
program. A particular implementation of CB-80 might limit the
number of dimensions allowed in an array. (Refer to Appendix E for
current limitations.)

The DIM statement dynamically allocates space for an array.
That is, the memory the array requires is not reserved until the DIM
statement is executed.

All Information Presented Here is Proprietary to Digital Research
3.4 Data Structures
The expressions specify the upper bound for each subscript.
Section 5 defines expressions. The lower bound is always zero. For
example:

DIM X(25)

allocates an array with 26 elements, X(O) , X(l) , through X(25). The
statement:

DIM ACCOUNTS(1,J)
creates space for (I+l) * (J+ 1) elements.

The actual method of allocation is undefined in CB-80. CB-80

does not define the order in which elements are stored in memory for
a specific array. The method of allocation can vary from
implementation to implementation. This approach allows allocation

32
All Information Presented Here is Proprietary to Digital Research

methods that give efficient access to array elements on machines
without hardware multiply.

35 Declarations

o) (O] ereresoin .
EXPRESSION (‘))

Declarations allow you to specify whether a specific variable
or function name represents an integer, real, or string data type.
Declarations also indicate that avariableisin COMMON.

EOL- IMWN ID 6TRIJWEY

REAL,

COMWM

The following statements are valid declarations:

INTEGER, J, LOOP. COUNT

REAL A, AMOUNT.DUE, C
STRING NAME, PART. DISCRIP

33
All Information Presented Here is Proprietary to Digital Research

35 Declarations

EOL (INTCON D D HTRING

o

In the statements above, the identifiers |, J, and LOOP.COUNT
represent integer dataitems and the identifiers A, AMOUNT.DUE, and
C represent real dataitems. NAME and PART.DISCRIP are strings.

If the identifier represents an array, the number of subscripts
are in parentheses following the identifier name.

INTEGER MAX (2), Y (1)
STRING NAMESS (1)

The statement above declares MAX to be atwo dimensioned
integer array, while' Y and NAMES$ each have one dimension. This
declaration does not result in allocation of space for the array.

Y ou must execute a DIM statement for an array prior to referencing
any elementsin the array.

Any statement in a declaration block can have alabel. CB-80
ignores the label except that it is assigned the address of the
first executable statement in the statement group that follows.

The following declarations are invalid:

INTEGER I,JK Missing comma.
REAL X(15,40) Arrays have number of

34
All Information Presented Here is Proprietary to Digital Research

dimensionsin parentheses.

STRING POS POS is areserved word.

REAL X : INTEGER | Colon cannot be used to group
declarations.

In addition to the INTEGER, REAL, and STRING statements, a
declaration group can contain blank lines, REM statements, COMMON
statements, and DATA statements. For example:
INTEGER FLAG], FLAG2 REM FLAGS FOR FILE 1/0
100 REMARK FOLLOWING VARIABLES USED FOR CALCULATIONS
REAL AMOUNT, BALANCE, PAYMENT
Y ou can place any program variablein COMMON. This alows data
to be shared by two or more programs. (See Section 7 for a
discussion of CHAINING.) The following COMMON statement places
three variablesin COMMON:
COMMON X, Y, Z

When avariable is subscripted, then the number of subscriptsis
placed in parentheses following the variable name. For example:

35 Declarations
COMMON A(2)
specifiesthat the variable A is atwo dimensioned array. The
statement order of variables placed in COMMON statements must be the

samein all chained programs using these variables.

The same variable can appear in adeclaration statement and a
COMMON statement. For example:

STRING X
COMMON X, Y(I)

35
All Information Presented Here is Proprietary to Digital Research

REAL Y()

Y ou can place any number of COMMON statements in a declaration
block. However, if adeclaration block isused in amultiple line
function (Section 4), no COMMON statements are permitted.

3.6 Default Declar ations

CB-80 provides default declarations for variables that do not
appear in an INTEGER, REAL or STRING declaration statement.
Variable names that end with a percent sign (%) default to integer
variables, while variables ending in adollar sign ($) default to
string variables. Other variables default to real variables.

For example, CB-80 treats the variable X asareal variable,
while A$ isastring. INTEGER, REAL, or STRING statements can

override the default declarations. The following statement declares
A% to be an integer.

INTEGER A$

3.7 DATA Statements

CONSTANT EOL

oS

36
All Information Presented Here is Proprietary to Digital Research

A DATA statement is not executable but defines alist of

constants that can be assigned to variables using a READ statement.
(READ statements are explained in Section 8.) Any number of DATA
statements can occur anywhere in a program, either in the

declaration group or in an executable group. However, CB-80 treats
al DATA statements, whether they occur as connective statements or
not, asone list of constants available during execution.

PATA CONG6TANT EOL-

3.7 DATA Statements
The following examples show valid DATA statements:

DATA 1,234

100 DATA "APPLE", GRAPE, "ORANGE"

DATA
In the last example, the continuation character continues a
DATA statement to another line. However, backs ashes can appear in
string constants enclosed in quotation marks.
Strings do not have to be enclosed in quotation marks, in which
case they are optionally delimited by commas. A field must be
terminated with acomma or the end of line character.

The following DATA statements are invalid:

DATA 12, 13 Missing field.

37
All Information Presented Here is Proprietary to Digital Research
DATA "ABC Missing quotation mark.
DATA 1,2 REM VALUES A REMARK not allowed here.
DATA 11AB11 "CD" Comma missing between strings.

DATA statements cannot appear in lines containing other
statements. A DATA statement cannot be part of a statement group

Labels are optional on DATA statements. Because aDATA
statement is not executable but rather defines alist of constants
that are available during execution, the label actually addresses

the first executable statement following the DATA statement. Thus
the following example:

START.EXEC: DATA 10,20,30
PRINT X

isequivalent to:

DATA 10, 20, 30
START.EXEC: PRINT X

3.8 Identifier Usage

3.8 I dentifier Usage

Unlessits scope is different, you cannot use an identifier for

two different elements even if the usage is not ambiguous. An
identifier used as a function name or as alabel cannot be used as a
variable. In addition, the same identifier cannot be used as both a
subscripted and non-subscripted variable.

The following exampleisinvalid:

ACCOUNT: ACCOUNT =3

The identifier ACCOUNT cannot be used as both alabel and asimple
variable. The next exampleisalso invalid:

38
All Information Presented Here is Proprietary to Digital Research

X=X+ X(3)

The identifier X cannot be used as both a subscripted and simple
variable name.

Section 4 discusses the scope of variable names. It is
possible for the sam, e, identifier to have two different uses when the
scope of theidentifiersis different.

End of Section

26
Section 4
User Defined Functions

A function allows you to execute the same group of statements
from various points in a program. Functions can be included in the
program that references them, or they can be in separate modules.

If the functions are in separate modules, each module is compiled
and the modules are then linked together. CB-80 provides two types
of functions: user defined functions and predefined functions.

This section describes user defined functions. Section 6 describes
predefined functions.

4.1 I ntroduction to User Defined Functions

Functions perform operations that have limited and controlled
interaction with the remainder of the program. CB-80 supports two
types of user-defined functions: single line and multiple line
functions,

Both types of functions can have zero or more formal

parameters. A function contains alist of the formal parameters
that are assigned a value when the function is accessed. An actua
parameter is an expression that is passed to the function when the
function is referenced, and substitutes for aformal parameter.
(See Section 5 for adiscussion of expressions.)

When afunction is accessed, the number of formal and actual

PF-F

39
All Information Presented Here is Proprietary to Digital Research

parameters must agree. In addition, if the formal parameter isa

string, then the actual parameter must evaluate to a string
expression; if the formal parameter i~'- N numeric, the actual

parameter must be numeric. An integer expression can be passed to a
real formal parameter, and an integer formal parameter can accept a

real actual parameter. The appropriate conversion occurs. The
implementation can limit the maximum number of parameters allowed in
afunction. (See Appendix E for current implemention limits.)

All parametersin CB-80 are passed by value. This means that

the actual parameter is evaluated before the function is executed.

The value of the actual parameter is then passed to the function and
becomes theinitial value for the corresponding formal parameter.
This method of passing parameters assures that changing a value of a
formal parameter does not change the value of a variable outside the
function.

Both single line and multiple line functions can be elementsin
an expression; amultiple line function can aso be invoked through
aCALL statement. (CALL statements are explained in Section 7.6.)

4.2 Single Line Functions
4.2 Single Line Functions

Single line functions evaluate an expression and return the
value of the expression. A single line function is similar to
Fortran's statement function.

ID F.XPrF-66110N F10L-

The ID following the reserved word DEF is the function name.

The expression following the equal sign can be any valid expression.
If the expression is of type string, the function name must be of

type string. (Section 5 explains expressions.)

40
All Information Presented Here is Proprietary to Digital Research

Y ou access asingle line function by using its name in an
expression. The following function cal cul ates the average of two
integers:

DEF AVERAGEY%(A%,B%) = (A% + B%)/2
A% and B% are formal parameters. When you reference a function,
actual parameters are substituted for the formal parameters and then

the expression is evaluated.

The following statement uses the single line function AVERAGE%
to determine the average of two expressions.

PRINT AVERAGE%(TEST.1% + 2, TEST.2%)

TEST. 1% + 2 and TEST.2% are the actual parameters substituted for A%
and B%.

The identifier used as a function name defines the type of
value returned. The function AVERAGE% defined above returns an
integer.

DEF CONVERT(A%) = A%

This function returns areal value since CONVERT isared
identifier.

DEF CAT$(A$,B%) = A$ + B$

All Information Presented Here is Proprietary to Digital Research

4.2 Single Line Functions
The function CATS$ returns a string.

Y ou cannot place the names of single line functionsin a
declaration. For example, the following statements are not correct:

STRING CAT
DEF CAT(AB) =A$ + B$

41

All Information Presented Here is Proprietary to Digital Research

4.3 Multiple Line Functions

Multiple line functions consist of a function definition
followed by a declaration block and an executable block. The FEND
statement indicates the end of a multiple line function.

Multiple line functions are equivaent to Fortran subroutines
and functions, or PL/I procedures.

PRF 1D POW, F-OL

10

DF~-- &ROUP 6TMT &ZOO0OP FEND 50~
‘We

Section 4.5 explains EXTERNAL and PUBLIC functions. They permit
linkage with separately compiled modules.

PEF 10

EXPRESSION

(= Ip _r@__

DEF FN.NAME(F,M,L)
STRING F,M,L,FN.NAME

42
All Information Presented Here is Proprietary to Digital Research

FN.NAME = F++ M ++ L
FEND

DEF MEAN(X,Y)

MEAN = (X +Y)/2.0
FEND

4.3 Multiple Line Functions

43
All Information Presented Here is Proprietary to Digital Research

The declaration group cannot contain a COMMON statement. Array
variables can be declared but each execution of the DIM statement
resultsin anew array being dimensioned. Array names cannot be
passed as parameters; individual array elements can be used as
actual parameters.

@ o PUBUC

®

DEC GROUP | gl sTMT GROUP

The executable block can contain any CB-80 executable
statements. However, function definitions cannot be nested. A
multiple line function cannot contain another multiple line or a
single line function definition. In addition, recursive references
are not supported.

Multiple line functions are invoked either with a CALL
statement explained in Section 7, or by using the function as an
element in an expression. If the function is used as part of an
expression, the function returns avalue. The type of the value
returned is the same as the type of the function name.

DEF A%

FEND

PRINT A%

44
All Information Presented Here is Proprietary to Digital Research

The function A% returns an integer value. Thisvalueisthe

last value you assign to the function name prior to returning from
the function. A function returns when the reserved word FEND is
reached or when aRETURN statement is executed. (Section 7.7
explains RETURN statements.)

DEF GREATER(A,B)
STRING GREATER, A, B

IFA>B THEN\
GREATER=A

ELSE \
GREATER =B

RETURN

FEND

The function GREATER returns a string that is equal to the greater
of the two parameters. The function GREATER can also be called,
with no value being returned. But in this example, it is of little
practical value.

CALL GREATER

A RETURN statement in afunction resultsin areturn from the
most recently executed GOSUB or function reference. (See Section 7
for adiscussion of the GOSUB and RETURN statements.)

4.4 Scope of Variables

4.4 Scope of Variables

All formal parameters and any variables you declare in the
declaration block are local to the function. In addition, labels
defined within amultiple line function are local to that function.
This means that they are unknown or undefined outside the function.

INTEGER A,B,C,D
DEF TESTIT(A,B)
INTEGER TESTIT,C

45
All Information Presented Here is Proprietary to Digital Research

C A+B
D A/B
FEND

In the program above, the function TESTIT has 3 local variables.
They are the formal parameters A and B, and the locally defined
variable C. Note that the function name TESTIT is also declared as
an integer within the function. The variables A, B, and C defined
before the function are different variables from the three local
variables A, B, C.

In the example above, the variable D is not local to the

function TESTIT. However, TESTIT accesses and changes the value of
D. A multiple line function can access and alter any variable that
isavailable to the main program. That is, avariable that is not

defined in adifferent multiple line function.

Changing D in the function TESTIT is aside effect of the
function. These side effects can often cause unexpected results.

The following example shows a function wi.:tb.alocal label MORE
called by a program with a statement group using the same label
MORE. The two labels are different; no confusion results from
thelr use.

DEF LOOP(MAX)
INTEGER MAX

MORE:
IFA<MAX THEN
A=A+1
GOTO MORE
FEND

MORE:
CALL LOOP
GOTO MORE

46
All Information Presented Here is Proprietary to Digital Research

45 Public and External Functions
45 Public and Exter nal Functions

Multiple line functions can be compiled separately, forming a

module. This module can be linked with another CB-80 module or a
module created by arelocatable assembler such as RMACT.M.. (RMAC s
available from Digital Research.)

Note that when combining modules to form a program, only one of
the modules can contain executabl e statementsin its executable
group. The other modules must only contain multiple line functions.

A function that can be referenced in another moduleiscalled a
PUBLIC function.

DEF THIS. IS. A. FUNCTION PUBLIC
INTEGER THIS. IS. A. FUNCTION

PRINT "I AM A PUBLIC FUNCTION"

THIS. IS. A. FUNCTION isapublic function. If amodule contains
thisfunction, and it is linked with another module, the second

module can reference THIS. IS. A. FUNCTION. The following program can
access function THIS.is.A.FUNCTION:

DEF THIS.ISA.FUNCTION EXTERNAL

INTEGER THIS. IS. A. FUNCTION

CALL THIS. IS. A. FUNCTION

In the example above, no code is generated for the EXTERNAL
function THIS.IS.A.FUNCTION. The compiler generates the required
information so that the linkage editor, LK-80, links the call to
function THIS.IS.A.FUNCTION with its definition in another module

If two modules are linked together only those functions that
are public in one module and external in another are linked. Each
module can use the same name for functions that are not PUBLIC or

47
All Information Presented Here is Proprietary to Digital Research

EXTERNAL without confusion.

Parameters can be passed to external functionsin the same

manner as they are passed to a procedure defined in the same module
in which they are accessed. No type checking is performed when
parameters are passed to an external procedure. It is your
responsibility to ensure that corresponding parameters agreein

type.

DEF ADD(A,B) PUBLIC
STRING A,B,ADD

All Information Presented Here is Proprietary to Digital Research
45 Public and External Functions

ADD=A+B

FEND

ADD isapublic procedure. It can be accessed from another module
by using the following external function definition:

DEF ADD(STR1$,STR2$) EXTERNAL
STRING ADD
FEND

Note that the parameter names do not have to be the same. However,
the function names must be the same and the types of the parameters
must agree. The following is an equivalent definition:
DEF ADD(S,S2) EXTERNAL

STRING ADD,SI,S2
FEND

Some linkage editors might restrict the length of external
names. (See Appendix E for current restrictions.)

4.6 Linkage With Assembly L anguage Routines

An external function does not have to be generated by another

48
All Information Presented Here is Proprietary to Digital Research

CB-80 program. It can be an assembly language program. The only
requirement is that the assembly language program must observe the
CB-80 parameter passing conventions. All parameters are passed on
the stack. Integers and real numbers are '~placed on the stack
directly. In the case of strings, a pointer to the string is placed

on the stack.

Integers and strings each occupy two bytes on the stack. The
values are stored as 16-bit addresses with the low-order byte first.
Real numbers are stored as eight byte quantities. The top byte on
the stack is the exponent. The eighth byte is the most significant
byte of the mantissa. Section 2 explains the format of integer and
real numbers.

If the address corresponding to a string parameter is zero, the
string isanull string. Otherwise, the address points to the
string. The first two bytes of the string represent the length of
the string, with the high-order byte first.

If the high-order bit of the string length is a one, the string
isatemporary string. The space for temporary strings must be
released prior to returning from an assembly language function. The
method of releasing strings is machine dependent. Section 12, on
LK-80, provides information on releasing strings.

4-6 Linkage With Routines

Y ou can use the SADD function, explained in Section 6, to pass
the location of a string without having to worry about whether a
string is temporary.

End of Section

Section 5
Expressions and Assignments

49
All Information Presented Here is Proprietary to Digital Research

An expression is a combination of operands and operators that
evauate to a single value. Operands are variables, constants, or
function references. Logical, relational, and arithmetic operators
combine operands. The value of an expression can be saved by
assigning it to avariable.

5.1 Operands

An operand is a variable, constant, function referdnce or an
expression enclosed in parentheses.

CONSTANT
VAIZIADLE~

Section 1 discusses constants. There are two types of
functions: user defined functions and predefined functions.
Section 4 discusses accessing user defined functions. Section 6
explains predefined functions.

5.1 Operands
(O EXPRESSION @

CONSTANT

VAR IABPLE -—

FUNC REF

50
All Information Presented Here is Proprietary to Digital Research

FUNCREF

This section discusses accessing variables. A variableisa

guantity that can change during program execution. Variables are
assigned values by assignment statements, explained in this section,
or by READ and INPUT statements, explained in Section 8.

The value of avariableisthe last value assigned to the

variable. If no value has been assigned to avariable, the value is
undefined. Some implementations may assign initial valuesto
variables but thisis not required. (Refer to Appendix E.)

ID
aFR~710N

Variables can be smple variables or subscripted variables. A
subscripted variable selects a specific element in an array and

treats the variable as a simple variable. Before an array element

can be accessed, you must use a DIM statement to all ocate space for
the array.

51
All Information Presented Here is Proprietary to Digital Research

36
5.1 Operands

The following list shows valid variables:

X MAT(1,3)

ACCOUNT.NO SIZE%

SCREEN$(I) INDEX.MAIN%

?SPACE NAMES$(K %)

The following variables are invalid:

3RRRRR Variable names must be identifiers.
X(-3,J) A subscript cannot be negative.
FINISH: Thisisalabdl.

STOP A reserved word cannot be avariable.

52
All Information Presented Here is Proprietary to Digital Research

5.2 Operators
[OCR failure until section 5.2.1]
80 provides three types of operators: logical, relational, and

——— FUNCREF -

——-@] EXRESHON @
o\
2/

of operatorsin CB-80.

Table 5-1. Operators
Operator | General Class

(Nested parentheses)

arithmetic

arit

etic

53
All Information Presented Here is Proprietary to Digital Research

arithmetic

concatenation, unary + and arithmetic

<F <=F >r >=| <> relational
NOT logical
AND logical

OR, XOR logical

5.2 Operators

A higher precedence operator is evaluated before alower
precedence operator. If two operators are of equal priority, they
are evaluated |l eft to right. For example the expression:

X+Y*Z

isevaluated by first multiplying Y by Z and then adding the result
to X. Thisis because multiplication (*) has a higher precedence
than addition (+).

In the next expression, the division is performed first because
multiplication and division are of equal precedence.

XIY*Z

Note: you can alter the order of evaluation by using parentheses
If the type of two operands differs, CB-80 requires conversion
to acommon type. The following table lists the rules for
converting operands. For example, if the operand on the left isan
integer and the operand on theright isreal, the integer is
convertedto areall value.

Right Operand

REAL INTEGER STRING

REAL NO CONV REAL ERROR
Left

54
All Information Presented Here is Proprietary to Digital Research

Operand
INTEGER REAL NOCONV ERROR

STRING ERROR ERROR NO CONV

NO CONYV indicates that no conversion is required; ERROR indicates
that operands of those types cannot be used together. An attempt to
combine these types of operands results in a compiler error.

Concatenation (+) combines or adds together two strings. It is
the only arithmetic operator that can be used with strings.

521 Logical Operators

CB-80 provides logical operators AND, OR, XOR, and NOT. NOT is
aunary operator; the others are binary operators. All logical

operators require numeric operands. All logical operatorstreat an
operand as a 16-bit binary quantity. If the type of an operand is

real, it is converted to an integer prior to performing the logical

opdrator.
She's not disagreeing. She's doing one last pathetic acting job.
6E
1 0 T
0 0 0
T 0 CIRV
0 T I T T T
T 0 0 T 0 0
T 0 Idox T 0 HO

5.2 Operators

AND

55
All Information Presented Here is Proprietary to Digital Research

The AND operator can "turn off" bitsin an integer. For
example:

FLAG% AND 80OFFH

5.2.2

ensures that bits 9 through 14 are 0 (off).

Thelogical NOT operator requires one operand. The NOT
operator inverts each bit of the operand. Thisresultsin thei's
complement of the operand.

The syntax diagram for the NOT operator is shown as part of the
syntax diagram for relational operators.

Relational Operators
CB-80 has six postfix relational operators that appear in the
table below. Relational operators compare two operands and produce
an integer result. If the relationship istrue, theresultisa
negative one (all 1 bits), otherwise it is a zero.

Table 5-2. Relational Operators

OPERATOR L RELATION
< LESSTHAN
<= LESS THAN OR EQUAL
> GREATER THAN
>= GREATER THAN OR EQUAL
= EQUAL
< NOT EQUAL
5.2 Operators

The value resulting from arelational operator is either true
(the relationship holds) , or false (the relationship does not hold).
Trueisavaue of OFFFFH, and false is zero. This ensures that not

56

All Information Presented Here is Proprietary to Digital Research

trueisfase.
Expressions containing relational operators are most frequently
used with WHILE loops and IF statements. (See Section 7 for a
description of the IF and WHILE statements.)

NOT A WK
The operands must both be numeric or of type string. if one
operand isreal and the other is an integer, the integer is
converted to areal value before performing the comparison.
The following examples show relational operators with real,
string, and integer operands. In each case, the result of the
operation is an integer value. In the final-eXample, INDEX% is
converted to areal value before the comparison4s performed.

A<B

ANSWERS$ = "STOP"

(1% <= J%) OR (X >Y)

INDEX% <> ANGLE

The following expressions show invalid uses of relational
operators:

A$<B% Cannot compare a string and an integer.
1% ><B% Not avalid relational operator.

X NOT =Y Invalid syntax (use <>).

5.2 Operators

5.2.3 Arithmetic Operators

57
All Information Presented Here is Proprietary to Digital Research

CB-80 provides five arithmetic operators: addition,

subtraction, multiplication, division, and exponentiation. Addition
and subtraction can be used as unary or binary operators; the
others can only be used asinfix operators.

Addition and subtraction can be performed on both integer and
real operands. If one operand is real and the other is an integer,
the integer is converted to areal value prior to performing the
operation. The binary operator for addition (+) concatenates
strings.

A FA&MV,

AFAL109-
Multiplication and division can be performed on both integer
and real operands. If one operand isreal and the other an integer,

theinteger is converted to areal value prior to the multiplication
or division.

ATEFM
Exponentiation, the f inal arithmetic operator, isalso
performed on both integer and real operands. Thefirst operand is
raised to the power represented by the second operand. If one

operand isreal and the other is an integer, the integer is
converted to areal value prior to performing the exponentiation.

5.2 Operators
A negative real value cannot be raised to a power. An
execution error occurs if the operand on the left of the operator is
negative.
L-P- MNT

5.2.4 Expression Overflow

58
All Information Presented Here is Proprietary to Digital Research

It is possible for some arithmetic operators to overflow the
maximum magnitude permitted for the type of operand involved. If
the operands are integers, overflow isignored. If the operands are
real values, an execution error occurs when overflow is detected.
In the following example, the addition overflows the maximum
magnitude of 32767 allowed for integer values.

INTEGER X,Y,Z

X =30000
Y = 30000
Z=X+Y

String overflow also causes an execution error. For example,

if two strings, each with alength of 20,000 characters, are
concatenated, the new string has to be 40,000 characterslong. This
is greater than the maximum string length and results in an
execution error.

Division of areal value by zero resultsin an execution error,
but division of an integer by 0 produces an undefined result.

Overflow of integer calculationsis not required to be checked
because of the substantial reduction in performance that results on

8-bit microprocessors when such checks are made. A particular
implementation might check for these conditions.

5.3 Assignment Statements
5.3 Assignment Statements

The assignment statement sets a variable equal to the value of
an expression.

59

All Information Presented Here is Proprietary to Digital Research

— ELEMENT [—=

ELEMENT

L, HT
-T2T VAR 1 A t3l-e, F-XM F-166 low

The value of the expression is assigned to the variable at the

left of the equal sign

LETX=Y +X

EXPRES5ION

———H%' VARIABLE —@—"

@

60
All Information Presented Here is Proprietary to Digital Research

LET A$(1,J) B$+ C$

The reserved word LET isoptional; normally it isnot used, asin
the following example.

X=A+10
If the type of the variable on the left of the equal signisa
string, the expression on the right must evaluate to a string. When
the variable is numeric, the expression must al'so be numeric. The

expression is converted to the type of the variable, either integer
or real, as shown in the following example.

A% B$ + C$(1%)
LETX=W*Y +1.0
1% X
The last expression above causes the variable X to be converted
to an integer, and then assigned to the variable 1%. If ared
value is greater than the maximum magnitude of integers, the result
of the conversion is undefined.

The following assignment statements are invalid:

AS$ X+ 1 Numeric expressions cannot be assigned
to astring variable.

X,YA+1 Only one variableis alowed on the left of
the equal sign.
5.3 Assignment Statements
54 Evaluation of Expressions

Expressions are evaluated so that the hierarchy of operatorsis
preserved and that normal algebraic properties (such as

61
All Information Presented Here is Proprietary to Digital Research

commutativity) are retained.
X+YadyY +X
These expression always eval uate to the same value (assuming X and Y
are variables and not functions). Y ou can use parentheses to
control the order of evaluation.
X* (Y +2)

The expression above performs the addition of Y and Z prior to
multiplying by X. But the expression:

X*Y+Z
performs the multiplication first.

To provide the maximum opportunity for optimization, no other
order of evaluation isimplied. In particular, if operations are
commutative, CB-80 might use this property to rearrange the
expression. This might result in two different implementations
giving different values to the same expression. Normally, side
effects resulting from the evaluation of functions cause this. In

the following example, setting W equal to 2 in the function X causes
Y and Z to have different values.

DEF X

W
X

BN

FEND

w=1
YA+X+W
ZA+W+X

Note: you can combine operators into complex expressions; however,
for any implementation, there is alimit on the complexity of
expressions. This should not affect most programs. If a compiler
error occurs because an expression is too complex, break the
expression into two expressions.

62
All Information Presented Here is Proprietary to Digital Research

The following list shows valid expressions:

AMOUNT * (QTY.ONHAND + QTY.ONORDER)

54 Evaluation of Expressions
((12-2) R2* (1.0-9))/746.0
(CINDEX 2) OR (CINDEX = 5) OR (CINDEX = 6)

| + SIN(X<Y) OR B/C

(X +Y)M)
The following expressions are invalid:

X +A$ Invalid operands (string and real).

1% - 1% K% Operator missing between J% and K%.

-AS$ Unary minus not allowed with string operand.

(X'Y)) Parentheses are not matched.
5.5 Mixed Mode Expressions
Mixed mode expressions are expressions in which a binary
operator has an integer and areal operand. In general, mixed mode
expressions generate more code and execute more slowly than
expressions that do not use mixed mode.

The following assignment has a mixed mode expression.

A=X+Y%

The operand X isreal, and the operand Y% is an integer. The
expression:

63
All Information Presented Here is Proprietary to Digital Research

X=X+2

is also mixed mode since the constant 2 is an integer constant. if
the expression iswritten as:

X=X+20

it isnot mixed mode. These last two examples are an exception to
the rule that mixed mode generates more code. In these examples,
the first expression generates less code than the second one because
the real constant (2.0) takes eight bytesto store.

End of Section

46

Section 6
Predefined Functions

Section 6 describes numeric, string, and other miscellaneous
predefined functions. A predefined function returns avalue that is
used as an operand in an expression. The type of the actual
parameters must match the usual convention that integer and real
values can be used interchangeably.

In this section, an X parameter represents areal numeric
expression. 1% represents an integer expression, and an A$
represents a string expression.
6.1 Numeric Functions
Numeric functions cal culate commonly used arithmetic and
trigonometric functions. The following sections describe each
numeric function.
6.1.1 The ABS Function

ABS(X)

The ABS function returns the absolute value of the argument X.

64
All Information Presented Here is Proprietary to Digital Research

The argument must be numeric and is converted to areal vaueif it
isan integer. ABSreturns areal value.
6.1.2 The ATN Function
ATN(X)
The ATN function returns the arc-tangent or inverse-tangent of
the argument X. The argument must be numeric and is converted to a

real valueif itisaninteger. ATN returnsareal value.

The ATN function is calculated using Chebyshev polynomials for
maximum accuracy. The argument X is expressed in radians.

6.1.3 The COS Function
COS(X)
The COS function returns the cosine of the argument. The

argument must be numeric and is converted to areal valueif itis
an integer. The COS function returns areal value.

6.1 Numeric Functions

The COS function is calculated using Chebyshev polynomials for
maximum accuracy. The argument X is expressed in radians.

6.1.4 The EXP Function
EXP(X)
The EXP function returns the irrational constant "€" raised to
the power of the argument. The argument must be numeric and is

converted to areal valueif it isan integer. EXPreturns ared
value.

The EXP function is calculated using Chebyshev polynomials for
maximum accuracy.

65
All Information Presented Here is Proprietary to Digital Research

6.1.5 The FLOAT Function

FLOAT(%)

The FLOAT function returns areal value equivalent to the
integer argument. The argument must be numeric and is converted to
an integer if itisareal value.

6.1.6 The INT and INTS Functions

INT(X)

INT%(X)

The INT and-INT% functions convert their arguments to whole
numbers. The argument must be numeric and is converted to areal
valueif it is an integer. Both functions truncate the argument to
awhole number.

The INT function returns areal value, while the INT% function
returns an integer value.

6.1.7 The LOG Function

LOG(X)

The LOG function returns the natural, or Naperian, logarithm of
the argument. The argument must be numeric and is converted to a
real valueif itisan integer. LOG returnsareal value.

The LOG function is calculated using Chebyshev polynomials for
maximum accuracy.

6.1 Numeric Functions

6.1.8 The MOD Function

MOD(1%,J%)

66
All Information Presented Here is Proprietary to Digital Research

The MOD function returns the remainder after dividing the first
parameter by the second parameter. Both arguments must be numeric
and are converted to integer valuesif either isareal value. MOD
returns an integer value.

6.1.9 The SGN Function

SGN(X)
The SGN function returns an integer value that represents the
algebraic sign of the argument. SGN returnsa -1 if the argument is
negative, O if itis 0, and apositive 1 if the argument is

positive.

The argument must be numeric and is converted to area value
if itisaninteger.

6.1.10 The SN Function
SIN(X)
The SIN function returns the sine of the argument. The
argument must be numeric and is converted to areal valueif itis

an integer. SIN returns areal value.

The SIN function is calculated using Chebyshev polynomials for
maximum accuracy. The argument X is expressed in radians.

6.1.11 The SQR Function

SQR(X)
The SQR function returns the square root of the argument. The
argument must be a numeric value and is converted to areal value if
itisaninteger. If the argument is negative, an execution error
occurs. SQR returns areal value.

The SQR function is calculated using Newton's method.

6.1.12 The TAN Function

67

All Information Presented Here is Proprietary to Digital Research

TAN(X) = SIN(X)/COS(X)
The TAN function is calculated using the identity above. The
function returns the tangent of the argument. The argument must be
numeric and is converted to areal valueif it isan integer. TAN
returns areal value.

All Information Presented Here is P-roprietary to Digital Research

6.1 Numeric Functions
The argument X is expressed in radians.
6.2 String Functions
This section describes string functions.
6.2.1 The ASC Function
ASC(A%)

The ASC function returns the ASCII numeric value of the first
character of the string argument. The value returned is an integer.

6.2.2 The CHR$ Function
CHR$(1%)
The CHRS$ function returns a one character string that is the
ASCII character represented by the value of the argument modul o 256.
The argument must be numeric; if it isareal value, it is
converted to an integer.
6.2.3 The LEFT$ Function
LEFT$(AS$,LEN%)
The LEFT$ function returns a string that includes the left most

characters of the first argument. The length of the string returned
isthe lesser of the length of the first argument and the value of

68
All Information Presented Here is Proprietary to Digital Research

the second argument.
The second argument must be numeric; if itisareal value, it
is converted to an integer. A null string isreturned if the second
argument is zero. An execution error occurs if the second argument
IS negative.

LEFT$("ABC",2) returns "AB"

If the second argument is longer than the length of the first
argument, the first argument is returned.

LEFT$("ABC",5) returns"ABC"

6.2 String Functions
6.2.4 The LEN Function
LEN(AS)

The LEN function returns the length of the strin g argument.
Zero isreturned if the argument is anull string.

6.2.5 The MATCH Function
MATCH(PATTERNS$,TARGETS$,1%)

The MATCH function has three arguments: a pattern string, a

target string, and a numeric value. The MATCH function returns the
position of the first occurrence of the pattern string in the target
string or zero if no match isfound. Searching starrts at the

position in the target string determined by the third parameter.

If the third parameter isreal, it is converted to an integer.
An execution error occursif the third parameter is zero or
negative.

A zeroisreturned if either the pattern string or the target

69
All Information Presented Here is Proprietary to Digital Research

string isanull string. The MATCH function provides specia
pattern characters for matching different classes of characters.
The following table provides a list of these characters.

Table 6-1. Pattern Characters

Pattern Corresponding Class of Characters
any digit

any lower-case or upper-case letter
? any character
For example:
MATCH('1##",'1ABCIA123" |) returns a 6
MATCH("##","ABCIAI23",7) returnsa 7
MATCH ("?2'#","3 peopleare in Al",l) returns a 16
Note: the preceding special definitions areignored if a backslash
(\) precedes a character in the pattern string and the next
character isa#, !, or 2. The backslash is an escape that

overrides the special pattern matching characters. Thus,

MATCH("ABCW-,"12ABC#" |) returnsa 3

6.2 String Functions

but

MATCH(-ABC#-,-12ABC#" |) returns a 0.
6.2.6 The MID$ Function

MID$ (A$, START%, LEN%)

70
All Information Presented Here is Proprietary to Digital Research

The MID$ function returns a string that is a segment of the
first argument. The segment starts with the character position
represented by the second argument. The third argument is the
length of the segment.

The second and third arguments must be numeric. They are
converted to integersif they arereal. A null string is returned
if the third argument is zero.

MID$("ABCD",2,2) returns "BC"

An execution error occursif the second argument is zero or
negative, or if the ihird argument is negative.

A null string isreturned if the second argument is greater

than the length of the first argument. The following example
returns anull string.

MID$(-ABCD-,5,3)
6.2.7 The RIGHTs runction
RIGHTS$ (A%, LEN%)

The RIGHT$ function returns a string that includes the right
most characters of the first argument. The length of the string
returned is the lesser of the length of the first argument and the
value of the second argument.

The second argument must be numeric; it is converted to an
integer if itisareal value. A null string is returned if the

second argument is zero. An execution error occursif the second
argument is negative.

RIGHT$("ABC",2) returns "BC"

Thefirst argument is returned if the second argument is longer
than the length of the first argument.

RIGHT$("ABC",5) returns"ABC"

71
All Information Presented Here is Proprietary to Digital Research

6.2 String Functions
6.2.8 The STR$ Function

STR$(X)
The STR$ function converts the numeric argument to a string
that is an ASCII representation of the number. The argument must be
numeric; if it isan integer, it is converted to areal value.
The number is converted to a string just as unformatted output
is printed to the console. The only difference between the string
returned by STR$ and the string printed to the console is that STR$
removes all blanks from the number.
6.2.9 The UCASB$ Function

UCASES$(AY)
The UCASES$ function returns a string in which the lower-case
characters in the argument have been translated to upper-case.

Other characters are not altered.

The argument remains unchanged unlessit is set equal to
UCASE$(AY).

A$ = UCASE$(AS)

The example above alters the argument A$ but the following
assignment does not change A$.

B$ = UCASE$(AS)
6.2.10 The VAL Function
VAL(AY)

The VAL function converts the argument into a floating point
number. Conversion isidentical to that used to input characters

72
All Information Presented Here is Proprietary to Digital Research

from the console.
Zero isreturned if the argument is anull string.
6.3 Miscellaneous Functions

This section describes miscellaneous support functions, such as
error handling and memory allocation.

6.3 Miscellaneous Functions
6.3.1 The CONKAND$ Function

COMMANDS$

The COMMANDS function returns a string equal to the command
line that was used when the program was executed. The command line
does not contain the name of the executed program and has leading
blanks removed. All lower-case letters are translated to upper

case.

Some operating systems might require that COMMANDSS be
implemented differently.

6.3.2 The ERR Function

ERR

The ERR function returns atwo character string equal to the

last execution error that occurred. The ERR function returns a null
string if no error has occurred. Appendix D lists the possible
execution error codes.

Use the ERR function in conjunction with the ON ERROR statement
explained in Section 7.

6.3.3 The ERRL Function

73
All Information Presented Here is Proprietary to Digital Research

ERRL

The ERRL function returns the line number of the last physical
source line executed. The ERRL function returns an integer value

The source program must be compiled with the N toggle,
otherwise a zero is always returned.

IF ERR="FR" AND ERRL=256 THEN\

GOTO FDEL
6.3.4 The FRE Function

FRE
The FRE function returns a binary value that is the total
amount of unallocated or free dynamic memory space. When FRE
returns a negative value, it represents alarge positive number.
When you use the FRE function, you must ensure that "negative"
values are interpreted correctly. In generd, if FRE returns a
negative value, there is ample space remaining in dynamic memory

space. Use the following statement to determine that dynamic memory
isat alow level.

6.3 Miscellaneous Functions

IF (FRE > 0) and (FRE < MIN.MEMORY %) THEN
CALL LOW. MEMORY. WARN ING

This also applies to the MFRE function described in the next
sectj-*Lon.

6.3.5 The NFRE Function

MFRE

74
All Information Presented Here is Proprietary to Digital Research

The MFRE function returns an integer value that is the largest
contiguous area of dynamic memory that is available. The value that
MFRE returnsis always less than or equal to FRE.
6.3.6 The SADD Function

SADD(A%)
The SADD function returns an integer value that is the address
of the string argument. The address returned is a 16-bit quantity
ranging from O to 65535. A zero value means that the argument isa
null string. A null string can also have a zero length.

The SADD function does not accept an expression as an argument.
6.3.7 The VARPTR Function

VARPTR(<VARIABLE>)
The VARPTR function returns an integer value that isthe
permanent storage space assigned to the argumen't. The argument can
be an integer, real, or string variable.

The VARPTR function accepts the following arguments:

Name of asmplevariable VARPTR(X)

Name of a subscripted variable DIM A$(10)
VARPTR(A$)

Element of anarray VARPTR(1%(2))
VARPTR does not accept an expression as an argument.

End of Section

55

Section 7
Flow of Control Statements

75
All Information Presented Here is Proprietary to Digital Research

Normally, program statements are executed in the order they
occur in the program. This section describes statements that alter
this execution sequence.

7.1 GOTO Statements

The GOTO statement transfers execution to a statement |abel
specified in the GOTO statement. The label referenced must be
defined within the program but need not be defined beforeit is used
in the GOTO statement.

6010 LAM,

If the GOTO statement is part of the executable group of a

multiple line function, then the referenced label must be contained
within that function. Likewise, a GOTO statement outside afunction
cannot refer to alabel within the body of the function. In other
words, alabel within afunction islocal to that function; its
existence is unknown outside the function.

Asexplained in Section 2, acolon is not part of areference
to an aphanumeric label. The following example shows both the
label ENDLESS (with the colon) and areference to ENDLESS.

ENDLESS: GOTO ENDLESS

100

If the label referenced in a GOTO statement is not part of an
executable statement, the next executable statement after the |abel
is executed. In the following example, the REM statement is not an
executable statement. Thus, execution of the GOTO 100 resultsin
the execution of the PRINT statement.

REM THISISNOT EXECUTED

PRINT X
GOTO 100

7.1 Flow of Control Statements

76
All Information Presented Here is Proprietary to Digital Research

The following examples show valid GOTO statements:
GOTO 100
GOTO START.OVER
GOTO IOOE-01
The following GOTO statements are invalid:
GOTO BEGIN: The colon is not part of the label referenced.
GOTO OFFFFH The hexadecimal constants cannot be |abels.
GOTO STOP A reserved word cannot be alabel.
7.2 |F Statements
An |F statement allows for the conditional execution of one of
two statement groups. The second statement group can be omitted

allowing the conditional execution of one statement group.

FL6F- T
0, IFCONP K 6TAL5MF-INT -t 6 TATF, M

The syntax diagram for RSTATEMENT is shown below.

—1 IFCOND %1 R STATEMENT STATEMENT

7.2 |F Statements

77
All Information Presented Here is Proprietary to Digital Research

The syntax diagram for an IFCOND is shown below.

T IFCOND =1 R ATATEMENT ELSHE R STATEMENT

b6 STATEMENT

O
A%

IF e)(FKI~6610N

The expression following the reserved word IF must be a numeric
expression. The expression isa"logical expression”, having
either atrue or false value. The expression isfalse if the value

of the expression is zero (0); any other valueistrue.

The first statement group is executed when the logical
expression is true. For example:

A 2
B 3
IFA <BTHEN

PRINT "FIRST GROUP EXECUTED"
ELSE\
PRINT "SECOND GROUP EXECUTED"

In this example, "FIRST GROUP EXECUTED" is printed because the value
of A islessthan the value of B. If the expression isfalse,
"SECOND GROUP EXECUTED" is printed.

A statement group can contain any executable statement except a
function definition. Statement groups can contain any number of
statements. Use the colon (:) to group statements together. As
shown below, the continuation character allows one statement
group to be written over many lines.

78
All Information Presented Here is Proprietary to Digital Research

IF PAGE.BREAK% THEN
PRINT FORM.FEED$
PRINT HEADER$
PAGE.NO% = PAGE.NO% + 1
LINE.NO% =1

|F statements can be nested.

IF MORE.MASTER THEN
IF CURR.REC = M.REC THEN
IF MORE.TRANSACTION THEN
PRINT PROCESS.TRANSACTION

7.2 |F Statements

In some cases, you must use empty or null statements to force
the proper pairing of the "IF" statement group with the ELSE
statement group.

IFI <JTHEN \FIRST IF

IFA =B THEN\SECOND IF

IF MORE THEN \THIRD IF

i+i+1\

ELSE \THISELSE MATCHES THIRD IF
[=1+1\
ELSE\THIS ELSE MATCHES SECOND IF
ELSE\THISELSE MATCHESFIRST IF

j=j+1

An ELSE matches the "nearest” IF, as shown in this example:

IF1 <JTHEN \FIRST IF

IFK>L THEN \SECOND IF

X =3\

ELSE\THIS ELSE MATCHES SECOND IF
Y=2

79
All Information Presented Here is Proprietary to Digital Research

I IFCOND = R STATEMENT ELLE R STATEMENT

—{ 5 STATEMENT

(-
N

The following IF statements are invalid.
IFA$ THEN GOTO 10 The expression must be numeric.
IFA<BPRINT X THEN ismissing.

7.3 FOR Loops

60

80
All Information Presented Here is Proprietary to Digital Research

FOR loops are one of two looping constructs that CB-80

provides. (See Section 7.4 for adiscussion of WHILE loops.) A FOR
loop consists of a FOR loop header, a statement group, and a NEXT
statement. The FOR loop executes the statements in a statement
group zero or more times depending on the values in the FOR loop
header.

7.3 FOR Loops

-@—— EXPRESSION 5TEP EXPRESSION

-G =)

On each iteration through the loop, the index is incremented by
the value of the step expression. If the step expression is

omitted, the index isincremented avalue of 1 (the default value) .
The general form of a FOR loop header is shown below.

81
All Information Presented Here is Proprietary to Digital Research

--@—— EXPRESSION EXPRESSION J

-

—ED i e (e)-

FOR index = <initial exp> TO <final exp> STEP <step exp>

The index must be an unsubscripted numeric variable. The type

of the FOR loop, either integer or red, is the type of the index.

Each of the three expressions are converted to the type of the loop.
If the index of a FOR loop is an integer, the initial, final, and

step expressions are converted to integers providing any of them are
real expressions.

If the FOR loop index isreal, any integer expressions are
converted to real values, asin the following example. Because the
index X isreal, the final value 2% is converted to areal value.
The step, which in this example defaults to 1, becomes the real
constant 1.0.

FORX =1TO J%

Programs that use integer indexes and in which the initial,

final, and step expressions are integers execute much faster and
generate less code than FOR LOOPs with real indexes. In the
following FOR LOOP header, no conversion is required because the
index and final expressions are both integers.

FORI1%=1TO 3

82
All Information Presented Here is Proprietary to Digital Research

61
7.3 FOR Loops

The following sample program demonstrates the logic used to
execute FOR loops.

index = <initial exp>
GOTO loop.end
loop.head:

[FOR loop statement group]

index = index + <step exp>
loop.end:
if <step exp><0then
if index >= <final exp> then
GOTO loop.head
else
else
if index <= <final exp> then
GOTO loop.head
else

(continue e xecution with statement following NEXT]
As the preceding sample program shows, loop termination is
based on the sign of the step expression. If the step is positive,
then the loop body executes as long as the index is less than or
equal to the final expression.

FORI1JTOK STEP 1

NEXT I

The FOR loop statement group above executesK - J+ 1 times. If J
is greater than K, the loop body is not executed at all.

If the STEP expression is negative, the FOR loop statement
group executes as long as the index is greater than or equal to the
final expression.

83
All Information Presented Here is Proprietary to Digital Research

FORI=-5TO-10 STEP-1
NEXT |

This loop executes 6 times, with | being assigned values of -5, -6,
-7, -8, -9, and -10.

7.3 FOR Loops

On each iteration of the FOR loop, thef inal and step
expressions are reevaluated. The index can be changed within the
loop. You can aso use the GOTO statement to enter or exit the
loop.

If the NEXT statement is followed by an identifier, the
identifier must be the same as the index of the loop that the NEXT
statement is terminating. The following FOR loops are equivalent:

FORJ=2TOK STEP5 FORJ=2TOK STEP5
NEXT NEXTJ

FOR loops can contain any executable statements including
another FOR loop.

FOR 1% =1TO N%
FOR J% = 1TO M%
A(19%,3%) = B(1%,3%) + C(1%,3%)
NEXT 2%
NEXT 1%

CB-80 does not limit the depth of nesting of FOR loops.

However, in a specific implementation, memory constraints during
compilation might result in alimit being placed on the number of
nested FOR loops. (Refer to Appendix E for specific limits.)

The following FOR LOOPS are invalid:

84
All Information Presented Here is Proprietary to Digital Research

FOR1%(1) =1 TON Theindex must b~-asimple variable.
NEXT 1%(])

FORJ=K TOL STEPM The NEXT identifier must match index.
NEXT K

FORI=1STEP3 Thereserved word TO and the final
NEXT value expression are missing.

74 WHILE Loops

LRERION ATMT (RONP

WHILE loops are the second type of looping structure CB-80
provides. A WHILE loop consists of a WHILE loop header, a statement

85
All Information Presented Here is Proprietary to Digital Research

group and aWEND statement. The WHILE loop executes the statements
in a statement group zero or more times depending on the value of
the WHILE loop header expression.

63
74 WHILE Loops

CR.
6TMT &V"P WEM?

The expression must be numeric. Aswith the IF statement, the
WHILE loop expression is treated as alogical expression. If the
expression evaluates to zero, the statement following the WEND is
executed. The statements in the statement group are executed if the
value of the expression is other than zero. The expression is
evaluated prior to each execution of the statement group.

The following sample program demonstrates the logic used to
execute WHILE loops.

GOTO loop.end
loop.head:

[executable group]
loop.end:

if <expression> <> 0 then
GOTO loop.head

(continue execution with statement following WEND]

The following loop executes indefinitely because the expression is
awaystrue.

INTEGER TRUE
TRUE=-1

WHILE TRUE

86
All Information Presented Here is Proprietary to Digital Research

FEND

Y ou can enter aWHILE loop by branching to any statement within
the statement group~. However normal practiceisto enter WHILE
loops at the loop header.

7.4 WHILE Loops
The following WHILE LOOPS are invalid:

WHILE The expression is missing.
WEND

WHILE A$ The expression must be numeric.
WEND
WHILE A% The statement group in awhile
DEF A loop must not contain afunction
FEND definition.
FEND

7.5 GOSUB Statements

The GOSUB statement transfers statement execution to a

LABEL- -

87
All Information Presented Here is Proprietary to Digital Research

statement specified by areference to alabel. The address of the
statement following the GOSUB statement is saved on a Last-In-First
Out (LIFO) stack so that statement execution can continue with (or
return to) the statement following the GOSUB.

--1-- 60600, - -] - I —

The label must be defined within the program but need not be

defined prior to its use in the GOSUB statement. If the GOSUB
statement is part of the statement group of amultiple line

function, then the label must also be part of that statement group.
Likewise, a GOSUB statement outside of a given function cannot refer
to alabel within the body of the function.

If the label is not part of an executable statement, the next
executable statement after the label is executed.

GOSUB 100

GOSUB PROCESS.ONE.RECORD

65

Use the RETURN statement, described later in Section 7.7, in
conjunction with the GOSUB statement to continue with the statement
following the GOSUB.

7.5 GOSUB Statements

The following list contains invalid GOSUB statements:

GOSUB GET.RECORD: Colonisn'tin areferenceto alabdl.

GOSUB 0101B Binary constants cannot be labels.

GOSUB NEXT A reserved word cannot be alabel.

7.6 CALL Statements

88
All Information Presented Here is Proprietary to Digital Research

EXPRESSION

©

CALL statements pass actual parametersto amultiple line

function and then execute the function. The address of the

statement following the CALL statement is saved on a Last-In-First
Out (LIFO) stack. So, statement execution can continue with (or

return to) the statement following the CALL. A RETURN statement or
a FEND statement returns execution to the statement following the
CALL.

CAW~ E~XPM:5610N

The number of parameters the CALL statement passes must be the
same as the number of formal parametersin the definition of the
multiple line function. When the formal parameter is a string, the
actual parameter must be a string. However, numeric parameters are
converted from integer to real (or real to integer) as necessary.

CALL FN.GET.RECORD
CALL GET.REC(FILE.NM$,REC.NO%,AMOUNT)

The following list containsinvalid CALL statements:
CALL PRINT(REC.NO%) Reserved word cannot be function name.

CALL FN.A XY Parameters must be enclosed in
parentheses.

66
7.6 CALL Statements

89
All Information Presented Here is Proprietary to Digital Research

DEF F(A) Anincorrect number of parametersin CALL
FE’ ;~k~k~k

CALL F(X,Y)

DEF F(A$) A numeric value cannot be passed to a

..... string formal parameter.

FEND

CALL F(X)
The multiple line function referenced in a CALL statement must
be defined before it isused in a CALL statement. Use the DEF
statement to define a function (see Section 4).
A CALL statement cannot call asingle line function or a
program label.

1.7 RETURN Statements

RETURN statements return the program to the statement following

the last CALL statement, function reference or GOSUB statement. The
statement returned to is the last address placed on the LIFO stack

by a GOSUB or CALL statement or by afunction reference.

RETURN

RETURN —

90
All Information Presented Here is Proprietary to Digital Research

If the RETURN statement is returning from a GOSUB or CALL
statement, execution continues with the statement following the
GOSUB or CALL, but avaueisnot passed back.

In the following example, the GOSUB statement transfers control
to the label ROUTINE: and saves the address of the next statement,
in this case the assignment to X. After the RETURN statement
executes, the assignment, X=3, executes.

ROUTINE:
Y=2
Z=30

RETURN
GOSUB ROUTINE
X=3

67
1.7 RETURN Statements

If the RETURN statement is returning from a function reference,

the last value assigned to the function name s returned to the
expression that referenced the function. In the following example,

the function ADD.THEM returns a value and assigns it- to the variable
X.

DEF ADD.THEM(A,B)
INTEGER A,B,ADD.THEM

ADD.THEM =A +B

91
All Information Presented Here is Proprietary to Digital Research

RETURN
FEND

X = ADD.THEM(23,56)

If more RETURN statements execute than there are addresses on
the LIFO stack, the results are undefined and an execution error
does not occur.

7.8 ON Statements

ON statements transfer execution to one of a number of |abels.
Control can be passed using a GOTO statement or a GOSUB statement.

The ON statement is similar to the computed GOTO statement in
FORTRAN. The expression is evaluated and is used as an index to
select one of the labelsin the list. The expression must be
numeric; areal expression is converted to an integer.

The ON statement must have at least one labdl in thelist;
thereis no limit on the maximum number of labelsin an ON
statement.

If
th

EXPRESSION

- LABEL ex

pr

=]

92
All Information Presented Here is Proprietary to Digital Research

aluatesto 1, thefirst label is selected;
if it evaluates to 2, the second label is selected, and so forth.
In the following example, the value of | is 3 so control passes to
LABEL3 where the PRINT statement prints the number 3. Since the ON

68
7.8 ON Statements

statement was an ON ... GOTO, no return valueis retained.

=3
ON | GOTO LABEL1,LABEL2,LABEL3

LABELI:
PRINT 1
STOP

LABELZ2:
PRINT 2
STOP

LABEL3:
PRINT 3
STOP

Thelabelsin an ON statement need not be defined before they

are referenced in the ON statement and they can be in any order in

the program. The next example shows an ON statement with one label
before and one following it.

20 PRINT 1

ON GOTO 10, 20

10 PRINT 2
.00.0.0

If the ON statement was an ON ... GOSUB, control can be
returned to the statement following the ON statement by executing a
RETURN statement.

93
All Information Presented Here is Proprietary to Digital Research

ON | GOSUB LABEL1,LABEL2,LABEL3
STOP
..0

LABELI:
PRINT 1
RETURN
LABELZ2:
PRINT 2
RETURN
LABEL3:
PRINT 3
RETURN

In the preceding example, the second label, LABEL?2, is

selected. When the RETURN statement is executed, control transfers
to the STOP statement which is the next statement following the ON

69
7.8 ON Statements

GOSUB.

If the index is lessthan one or greater than the number of
labelsin the list, the results are undefined. No execution error
occurs. Therefore you should always test the index value before
executing an ON statement.
The following ON statements are invalid:

ON | GOTO 100 200 Commais missing between labels.

ON B$ GOSUB 12, 23 Expression must be numeric.

ON K-110, 20 GOTO or GOSUB is missing.

7.9 ON ERROR Statements

94
All Information Presented Here is Proprietary to Digital Research

EXPRESSION

- LABEL-

¥

The ON ERROR statement traps execution errors allowing the
program to process them. The ON ERROR statement is an executable
statement that must be executed prior to trapping errors.

ON KKOK &oTo A JBF,L-

When an execution error occurs and the program has executed an

ON ERROR statement, execution continues at the first executable
statement following the label referenced in the ON ERROR statement.
In the following example, if an error occurs after the ON ERROR
statement has been executed, the program continues execution at
PROCESS.ERROR.

ON ERROR GOTO PROCESS.ERROR
PROCESS.ERROR:

When an error occurs, the execution stack isreset. This means

that any return addresses are lost. For this reason, an ON ERROR
statement must not be used in the statement group of amultiple line
function.

If aprogram contains multiple ON ERROR statements, the last ON
ERROR statement executed determines the label that is branched to

70
7.9 ON ERROR Statements

95
All Information Presented Here is Proprietary to Digital Research

The ON ERROR statement is normally used in conjunction with the
ERR and ERRL functions explained in Section 6.

The following list containsinvalid ON ERROR statements:
ON ERROR 100 Reserved word GOTO is missing.
ON ERROR GOSUB ERRQ GOTO isrequired in place of GOSUB.

7.10 STOP Statements

The STOP statement terminates execution of a program. Control
returns to the operating system.

Prior to returning to the operating system, any open files are
closed.

7.11 CHAIN Statements

EXPRESSION —

The CHAIN statement loads and executes a new program. The

CHAIN statement can load two types of programs. an overlay program
created by the linkage editor (LK-80), or a directly executable core
image (COM) file.

The information concerning the CHAIN statement is general, and

96
All Information Presented Here is Proprietary to Digital Research

examples apply to the CP/M and MP/M operating systems. For more
detailed information on linking modules and programs, refer to the
linkage editor (LK-80) documentation in Section 12.

--I-CHAIN WI?e-76~210N 1P

The CHAIN statement expression, which must evaluate to a string, is
the name of the program to be loaded. If no filetypeis specified,
atype of OVL isassumed. An execution error occursif thefile
cannot be opened.

71

7.11 CHAIN Statements

The following statement loads the file "RPTWRT.OVL" and then
executes the new program. All OVL filesloaded by a CHAIN statement
must have been linked with the last COM file loaded.

CHAIN IRPTWRT"

The next statement loads and executes the file AR.COM. When a
program is loaded, the variables in the data area are set to zero if
they are numeric and to null stringsif they are string variables.

Any variablesin the COMMON arearemain as they were before the
CHAIN statement was executed.

CHAIN "AR.COM"

If the program being chained to has a COM filetype, and the
program has a different name than the last COM file loaded, the
COMMON variables are also reset to zero or null strings. This
allows a CHAIN statement to load and execute a completely new
application.

A CHAIN statement can load a COM file created by languages

other than CB-80. The COM files loaded need not be created by LK
80. However, all OVL filesloaded must have been created by LK-80.
In addition, if aCOM file chainsto an OVL file, both the COM and
OVL files must have been created by LK-80.

97
All Information Presented Here is Proprietary to Digital Research

The CB-80 run-time support system zeros the data area prior to
executing a program. This means that assembly language modules
linked with CB-80 modules cannot have initialized datain data

segments.
End of Section
72

Section 8

Input/Output Processing Statements

Input/Output processing statements allow data to be transmitted
between external devices and CB-80 variables. This section explains
transfer of datato and from the console device and to the line
printer.

This section also explains assigning datain DATA statements to
CB-80 variables. In addition, the POKE, RESTORE, RANDOMIZE
statements, and predefined functions associated with input and
output operations are explained.

8.1 INPUT Statements

INPUT statements accept data from the console and assign the
datato program variables.

@ 0‘ @ VARIABLE ——

Ox

-4--(INPUT 67MN UN~, VARIADLr

The ssimplest form of an input statement.accepts data from the
console and assigns the data to alist of variables. The following
statement inputs three data items from the console and assigns each
dataitem to avariable.

98
All Information Presented Here is Proprietary to Digital Research

INPUT A, B$, C%

The data input must contain exactly three data fields. When you
enter datain response to this statement, separate the first two

fields with a comma and terminate the last one with a carriage
return. A field isastring or numeric constant followed by acomma
or by the end of the input line.

When an INPUT statement is executed, the compiler prints a
guestion mark (?) on the console followed by one blank space. Then
you can enter charactersin response to the input statement. The
response terminates either with a carriage return or after you enter

the maximum number of characters allowed. The maximum is at least
255 characters. (See Appendix E for specific implementation limits.)

73
8.1 INPUT Statements
All the characters you enter in response to an INPUT statement
are echoed at the console. CB-80 supports the normal line editing
input commands of the operating system.
Datayou enter in response to an INPUT statement must contain a
field for each variable in thelist. In the example above, three
fields are required. Except for the last field, fields are
terminated with acomma. The following input statement requires two
fields:

INPUT A, B%

The following is a proper response for thisinput statement:
?123.45, 45

CB-80 prints the question mark and the blank space that follows. If
you enter an incorrect number of fields, a warning message appears

at the console and you must reenter all the fields.

Y ou can enter strings enclosed in quotation marks. This

99
All Information Presented Here is Proprietary to Digital Research

permits any character-, except a carriage return to be inclu&--d in the
string. Double quotation marks within the string reprasent one
guotation mark and do not terminate the string.

INPUT NAME$

The following isavalid response to the preceding statement:

"Jones, John"

If astring isnot enclosed in quotation marks, the first comma ends
the string. Any other character except a carriage return can appear
inafield.

When afield is assigned a numeric variable, CB-80 converts the
entire field to the internal representation corresponding to the
class of the variable. If CB-80 encounters an unexpected character
in the field, conversion to the internal form terminates.

INPUT X

The following response to the statement above resultsin X being
assigned a value of 123.45. The character "Q" is not expected as

part of a number. Thus, the remainder of the field isignored. No

error message is printed.

?123.45Q+23

74

When you enter datafor assignment to an integer variable, and

the magnitude of the integer exceeds the maximum magnitude of CB-80
integers (32,767), the assigned value is undefined. Aswith all

integer overflow, no error results.

8.1 INPUT Statements

Y ou can use aprompt string in an INPUT statement. If a prompt
string is present, CB-80 printsit in place of the question mark.
CB-80 still prints asingle blank prior to accepting inpuit.

100
All Information Presented Here is Proprietary to Digital Research
INPUT "Enter three numbers'; A, B, C
This statement prints the following prompt on the console:
Enter three numbers

Following the prompt, one blank is printed and then three fields are
accepted as input.

If the prompt string is null, the INPUT statement operates the
same as an INPUT statement without a prompt string except that no
guestion mark is printed.
The INPUT LINE statement is a special form of the INPUT
statement that accepts one line of input from the console and
assignsit to a string variable. The statement:

INPUT "What is your name?"; NAME$
accepts any characters as input until you enter a carriage return.
The entire line, excluding the carriage return, is assigned to the
string variable NAMES.
Only one variable can appear in an INPUT LINE statement. if
you enter only a carriage return in response to an INPUT LINE
statement, a null string is assigned to the variable.
The following statements are valid input statements:

INPUT "Enter the data"; A,B,C

INPUT LINE X$
The following input statements are invalid.

INPUT LINE A Must be a string variable.

INPUT "Enter" X Semicolon is missing after prompt.

INPUT A$; C% Prompt must be a string constant.

101
All Information Presented Here is Proprietary to Digital Research

8.2 CONSOLE and LPRINTER Statements

During execution of a CB-80 program, a print control flag
determines whether output from a PRINT statement is displayed on the
list device or on the console. The print control flagis a special

75
8.2 CONSOLE and LPRINTER Statements

variable maintained by CB-80; you cannot directly access the
control flag. The CONSOLE and LPRINTER statements set and reset
thisflag.

When the print control flag is reset or false, output from

PRINT statements prints on the console. When the flag is set, the
output goes to the list device. Initially, the flag is reset so the
output appears on the console.

The LPRINTER statement sets the print control flag to true so
information can be printed on the list device.

LKINTE-K
The CONSOLE statement resets the print control flag.
CONG60L5-

The print control flag does not affect output resulting from

INPUT statement prompt strings. The toggle always appears on the
console. When either a CONSOLE or LPRINTER statement is executed
and the position in the current output lineisnot 1, a carriage

return and line-feed are printed prior to changing the print control

flag.

102
All Information Presented Here is Proprietary to Digital Research

The following example uses the LPRINTER and CONSOLE statements.

IF LST.REQ THEN

ELSE

76

PRINT

LPRINTER
\
CONSOLE

8.3 DETACH Statements

The DETACH statement & Laches the printer currently assigned to

the program. The DETACH statement isignored unless MP/M is being
used. Normally, DETACH is used in conjunction with the ATTACH
function (described in Section 8.10.1).

8.3 DETACH Statements

8.4 PRINT Statements

The PRINT statement prints data on the console or line printer
depending on whether the print control flag isfalse or true.

O-EIN& F~XPKE~6610N
Section 10 explains the USING option of the PRINT statement
which provides formatted output. This section discusses unformatted

output.

Each expression in the list is printed on the console or the

103
All Information Presented Here is Proprietary to Digital Research

list device depending on the setting of the print control flag. The
following statement prints three fields. Thefirst field startsin
column one; each of the remaining fields start at the next column
after the last number printed that is a multiple of 20. A new line
is started after the last field is printed.

PRINT X, Y$, 1%

The comma forces automatic tabbing after the field has been
printed. The tab positions are 1, 20, 40 etc. The next example:

PRINT 12,13.78,14

prints the following line on the console. In this section and in
Section 9, the asterisk (*) marks column 1 and the symbol <NL>
indicates that a new line starts.

12 13.78 14<NL>
Numeric expressions are printed in two formats depending on the

value of the number. The value printsin afixed decimal format if
the number is greater than or equal to 0.01 and less than or equal

77
8.4 PRINT Statements

t0 99,999,999,999,999. If the number is outside this range, the

valueis printed in scientific notation with one digit before the

decimal point.

1.0E 32

7.218E-10
If anumber is negative, aminussign (-) is printed before the
first digit. A positive number has a blank space preceding the
first digit in place of the sign. One blank is printed after the
number is printed.

Strings are printed as is; no leading or trailing blanks are

104
All Information Presented Here is Proprietary to Digital Research
output and the strings are not enclosed in quotation marks.

A$="HI"
PRINT A$

This statement outputs:

HI<NL>
If two expressions are separated by a semicolon instead of
acomma (,), no automatic tabbing takes place. One field follows

directly after the last. Numeric fields are still separated by a
blank because numbers always have a blank printed after them.

A 3
A$ "HI"
PRINT A;AA

The preceding outputs:
3 HIHI<NL>

If the last expression in aPRINT statement is followed by a
comma (,) or asemicolon (;), anew lineis not started.

PRINT A+B, B-A, A-B,
If the last character is acomma as shown in the example above,
the tabbing to the next column that is a multiple of 20 occurs but
no carriage return is output.

PRINT "SAY HIIII

This statement outputs:

78

SAY HI

105
All Information Presented Here is Proprietary to Digital Research
The underscore (_) indicates one blank was printed.
The trailing comma or semicolon causes the next PRINT statement
to output on the same line asthe PRINT statement with the trailing

delimiter.

PRINT "THISIS
PRINT "A SENTENCE"

outputs:
THIS ISA SENTENCE<NL>

The next example shows aloop printing a value and automatically
tabbing to the next column.

FOR1%=1TO3
PRINT 1%,
NEXT 1%
PRINT
The output from this program is shown below.
1 2 3 <NL>
The following example does not use automatic tabbing.
FOR1%=1TO3
PRINT 1%;
NEXT 1%
PRINT
The output from this program is shown below.
123<NL>
The following PRINT statements are invalid:
PRINT A+B C+D Delimiter (, or ;) ismissing.

PRINT A+ Expression isincomplete.

106
All Information Presented Here is Proprietary to Digital Research

PRINT A,,B An expression is missing.

79
84 PRINT Statements
A PRINT statement with no expression list can print blank
lines.

PRINT

PRINT

The two preceding statements each start a new line. Thus two blank
lines are printed. The two statements

PRINT "HI THERE",
PRINT

are equivalent to the statement:
PRINT 11HI THERE"

8.5 POKE Statements

EXPRESSION [: }— EXPRESSION |—=—

The POKE statement places the value of the second numeric
expression at an absolute memory location determined by the first
numeric expression., -The value placed in memory is one byte of data.

-0- 6X F7RF,6,-910N-06-- P(PFZ11~6~10N

The first expression must evaluate to a valid address for the

computer being used. However, CB-80 does not verify that the memory
addressisvalid. The second expression, modulo 256, is placed at

this memory location.

POKE MEM.LOC%,VALUE%

80

ouT

107
All Information Presented Here is Proprietary to Digital Research

The absolute addresses assigned to the program code and data

area are determined when a module is linked. When using the POKE
statement, the effect of linking the program must be taken into
account.

The expressions must be numeric; if either expression isreal,
it is converted to an integer.

8.6 OUT Statements

ouT EXPRESSION b} EXPRESSION |——

The OUT statement outputs an integer value to a hardware output
port. This function is hardware dependent and might not have the
same effect on different processors. In addition, the OUT statement
can also interfere with the operating system you are using.

8.6 OUT Statements

EXPM66ION

OUT PORT%, 1%

The arguments must be numeric; if either isareal valueitis
converted to an integer. The first expression must evaluate to a
valid port number for the processor being used. CB-80 does not
verify that the port number isvalid. The second expression, modulo
256, is output to the selected port.

8.7 READ Statements
—>@ VARIABLE
(o)

2

108
All Information Presented Here is Proprietary to Digital Research

READ statements accept data defined by DATA statements and
assign the values to variables. DATA statements are explained in
Section 3.

—F@ CONSTANT EOL

_@__

-0- VARIAOL-5
The following statements assign the value 10 to the real
variable X, an integer value 20 to 1%, and the string "HI" to the
string variable AS$.

DATA 10, 20, "HllII

READ X, 1%, A$~

The following statements are equivalent to those above:

DATA 10, 20
READ X
READ 1%, A$
DATA "HI"

81

fields.

Each READ statement assigns the next field in the DATA
statement to the variable in the next READ statement. All the DATA
statements in a program are treated as one consecutive group of

8.7 Read Statements

If the variable in the READ statement is numeric, the field

from the DATA statement is converted into the appropriate internal
representation. When assigning values to variables with READ
statements use the same rules as for the INPUT statement. The
statements below assign a value of zero (0) to 1%. Thisis because

109
All Information Presented Here is Proprietary to Digital Research

string "XYZ" is not avalued integer. However, K% is assigned a
value of 71.

DATA "XYZ11F "71"
READ 1%,K%

If you attempt to read afield past the last field in the last

DATA statement in the program, an execution error occurs. Executing
the following statements results in an execution error unless there

are other DATA statementsin the program.

DATA XYZ
READ A$, B$()

The following READ.statements are invalid:

READ AB Commaismissing.

READ 1(3%);V% Variables must be separated by commas.
READ A, B Variable nameis missing.

The RESTORE statement, explained in the next section, allows
the DATA statements to be reused.

8.8 RESTORE Statements
The RESTORE statement repositions the pointer into the data
area, so the next value read with a READ statement will be the first
item inthefirst DATA statement in the program.

The following is an example of a RESTORE statement:

RESTORE
82 -1
8.9 RANDOMIZE Statements

8.9 RANDOMIZE Statements

110
All Information Presented Here is Proprietary to Digital Research

The RANDOMIZE statement seeds the pseudo-random number
generator so the RND function (see Section 8.10.8) generates random
numbers.

RANPOMME~

On operating systems that do not provide atime of day

function, the seed is generated using the time taken to respond to
INPUT statements. If the time of day isavailable, it generates a
random seed.

Thus, on operating systems that do not have the time of day
available, it is necessary to execute an INPUT statement prior to
using the RANDOMIZE statement. In any event, a RANDOMIZE statement
must be used prior to using the RND function to generate a different
pseudo-random series each time the program is executed. Section
8.10.8 explains the RND function.
8.10 I nput/Output Predefined Functions
8.10.1 The ATTACH Function
The ATTACH function returns an integer that istrue if the
selected printer can be attached by the program. Otherwise, ATTACH
returns afalse value.

ATTACH (PRINTER.NO%)
8.10.2 The CONSTAT% Function
The CONSTAT% function returns an integer set equal to the
console status. If a character has been entered at the console but
not yet read, CONSTAT% returns "true”, which is a negative one.
Otherwise, CONSTATS$ returns afalse or zero value.

CONSTATS
8.10.3 The CONCHAR% Function

The CONCHAR% function returns the ASCII integer value of the

83

111
All Information Presented Here is Proprietary to Digital Research

next character typed at the console and displays that integer on the
screen.

8.10 Input/Output Predefined Functions

The lower eight bits of the returned value are the binary
representation of the ASCII character read from the console. The
high-order eight bits are always zero.

CONCHAR% always reads one character from the console. If no
character has been entered, CONCHAR% waits until a character is
entered at the console.

CONCHAR%

For example, if you enter an upper-case letter "A" at the
console, the CONCHAR% function returns a value of 65.

8.104 The INKEY Function

The INKEY function returns an integer equal to the next
character entered at the console. Unlike the CONCHAR% function,
INKEY does not echo the character at the console.

The lower eight bits of the returned value are the binary
representation of the ASCII character read from the console. The
high-order eight bits are always zero.

INKEY

INKEY is useful when control characters or other special

characters might be input and you do not want these charactersto be
printed. INKEY can also accept passwords. Some operating systems

might require that INKEY be implemented identically to the CONCHAR%
function.

8.10.5 The INP Function

112
All Information Presented Here is Proprietary to Digital Research

The INP function returns an integer equal to an 8-bit value

input from the 1/0 port selected by the argument. This function is
hardware dependent and might not have meaning on certain processors.
In addition, the INP function might interfere with the operating

system being used.

The argument must be numeric; if it isareal value, it is

converted to an integer. The argument must evaluate to avalid port
number for the current processor. CB-80 does not check the validity
of the port number.

INP(PORT%)
8.10.6 The PEEK Function
The PEEK function returns an integer equal to the value of the
memory location selected by the parameter. The memory location must

be valid for the computer being used. However, CB-80 does not check
on the validity of the memory address. The parameter must be

84
8.10 Input/Output Predefined Functions

numeric; if itisreal, it is converted to an integer.
PEEK (MEM. LOC %)
8.10.7 The POS Function

The POS function returns the current position in the output
line. The value returned is an integer.

POS returns the number of characters plus one that has been
output to the console or list device since the last carriage return.
In other words, POS returns the next position in which a character
will be printed.

Output to the console can be generated by PRINT statements or
by INPUT statement prompts.

113
All Information Presented Here is Proprietary to Digital Research

POS
The following statements

PRINT
PRINT POS,POS

print the numbers 1 and 20 starting in columns one and twenty,
respectively. The value POS returns might not be valid if you

output characters that change the cursor position, such as clearing
the screen. The CONCHAR% function can invalidate the value POS
returns.

8.10.8 The RND Function

The RND function returns areal value that isauniformly
distributed pseudo-random number between O and 1.

RND
8.10.9 The TAB Function

The TAB function prints blank characters until the value POS
returnsis equal to the argument. If the value of the argument is
less than or equal to the current position to be printed, anew line
starts and then the TAB function executes.

The argument must be numeric; if it isareal value, it is
converted to an integer. A zero or negative argument causes an
execution error.

TAB(1%)

85
8.10 Input/Output Predefined Functions

If the console cursor position has been changed with specid
control characters, or if the position has been changed with the
CONCHAR% function, the TAB function does not provide the desired

114
All Information Presented Here is Proprietary to Digital Research

results.

Y ou can analyze the TAB function in PRINT statements. The
following statement prints the string "HI" starting in column 19.

PRINT TAB(19), "HI-

Y ou can blank out a portion of aline with the following PRINT
statement:

PRINT TAB (20)

End of Section

86

Section 9
File Processing Statements

A fileisacollection of dataitems stored on an externa

device such as afloppy disk or Winchester hard disk. CB-80 is not
concerned with the physical storage of the data but rather with the
logical organization of the data. This section explainsinput and
output between the file system and CB-80. Sections 9.2 through 9.5
explain the statements that open or create files, accessfiles, and
close or delete files. In addition, Section 9.6 explains predefined
functions that involve file accessing.

9.1 File Description

In general, CB-80 files are made up of ASCII characters. This
allows the file to be conveniently displayed on the system display
using operating system utilities. Binary files can be built and
accessed with certain restrictions explained in this section.

CB-80 supports two types of files: stream and fixed. In a

stream file, information is placed in the file as a stream of fields
with no record structure. Thefile is a continuous stream of
individual dataitems. There is no implied relationship between the
data items.

87

115
All Information Presented Here is Proprietary to Digital Research

Either acomma or anew line character separate each fieldin a
stream file from the next field. With most operating systems, the
new line characters are a carriage return followed by aline-feed

Fixed files dso have fields of data separated by commas.
However, the fields are grouped into fixed lefigth records. Unused
space in records is padded with blanks. The new line characters
terminate the record.

In fixed files, the new line characters are part of the record.

Thus, the minimum record size istwo bytes. Of course, no
information can be stored in afile with arecord length of two.

The maximum record length must be expressed as an integer value.

9.2 OPEN and CREATE Statements

Before data items can be written to afile or read from afile,

an interface must be established between CB-80 and the operating
system. Characteristics such as the device selection, filenames,
and buffer requirements must be defined.

CB-80 provides two statements to define files: the OPEN and

CREATE statements. The OPEN statement accesses existing files; the
CREATE statement creates anew file with no dataiin it.

9.2 OPEN and CREATE Statements

116

Al|_| nformatrormPresented+gre is ProprietarytoDrgrtat-Resear

EXPRESSION RECL-

R

EXPRES5I0N

EXPRESSION

&

EXPRESSION

OPEN WLL-
EXPFEGSION

LN

LCUED

&

EXPRF,6610N

JWFF ~61.6 ION

S

The first expression in an OPEN or CREATE statement isastring
expression that evaluates to a valid filename for the operating

system. A particular operating system might restrict the characters
in the filename and the length of the name.

The expression following the reserved word AS assigns a CB-80
file identification number to the file. All future referencesto

thef ile use thisnumber . Thef ileidentif ication number can be any
numeric expression. If the expression evaluatesto areal value, it

is converted to an integer. An execution error occursif the value
iSzero or negative, or if it is greater than the maximum number of
files that can be open at one time. (See Appendix E for current

limits.)

117
All Information Presented Here is Proprietary to Digital Research

A fileis open when it has been assigned afile identif ication

number by an OPEN or CREATE statement. Y ou cannot use the samefile
identification number for two files open at the same time. An

execution error occurs if the file identification number in an OPEN

or CREATE statement is currently assigned to another file. The

number of files that CB-80 allows to be open at one time depends on

the implementation. (See Appendix E for current limits.) Some

operating systems might impose further restrictions on the number of

files that can be open at one time.

OPEN "TEST" AS 4

CREATE W.DISK$ + W.NAME$ AS WORKFILE%

88
9.2 OPEN and CREATE Statements

The filename and file identification number must appear in
every OPEN and CREATE statement. The other information is optional.

If afile hasfixed length records, specify the record length
following the reserved word RECL. The following statement opens a
file named MASTER with arecord length of 700 bytes.

OPEN "MASTER" RECL 700 AS 1

MASTER is assigned afile identification number of 1. The record
length can be any numeric expression. Real values are converted to
integers.

CREATE NAME$ RECL FIELD1% + FIELD2% + 2 AS 3%

When afile is opened with the RECL option, thefileis afixed
file.

The reservedword BUFF specifies the number of internal buffers

to maintain for thefile. If no buffers are specified, a value of
oneisassumed. The size of a buffer depends on the implementation,
but is normally chosen so that it is the amount of datathat can be

118
All Information Presented Here is Proprietary to Digital Research

accessed by one call to the operating system. (See Appendix E for
current specifications.)
OPEN A$ AS4 BUFF 10

The statement above opens afile with 10 buffers assigned for

its use. Multiple buffers are always stored consecutively in

memory. Use the MFRE function to determine the amount of available
memory prior to choosing the number of buffers.

The BUFF option cannot specify more than one buffer when the
fileis accessed randomly. Random access is explained Section 9.3.

The amount of buffer space CB-80 requiresisindependent of the
record length. CB-80 does not require that the complete record be
held in memory at one time. CB-80 provides al the deblocking
necessary to support large records in a system with limited memory.

The following OPEN and CREATE statements are invalid:

OPEN "TEST" File identification is missing.

CREATE A$ AS 1 RECL 100 Reserved words are in wrong order.

CREATE3AS2 Filename must be of type string.

OPEN FN$ BUFF 10 AS 2 Reserved words are in wrong order.
The INITIALIZE statement resets the operating system after

diskettes or other storage media have been replaced. This prevents
the operating system from writing data to the wrong place on the

89
9.2 OPEN and CREATE Statements

storage media.

el TAWZE~ P1XMF_616 ION
~ 7

119
All Information Presented Here is Proprietary to Digital Research

The INITIALIZE statement must not be executed until the
swapping is complete and the devices on which the mediais placed
are ready.

If the expression is present, it is used as a bit pattern to
select which drivesto reset. For example, the statement

INITIALIZE 11B
initializes only drives A and B. The expression isonly required in
multi-user systems where other users might prevent resetting all the
drives.
9.3 File Accessing Methods
Y ou can access filesin three ways. sequentially, randomly, or
one byte at atime. Y ou can use these methods interchangeably with

the provision that only fixed files can be accessed randomly.

The following sections explain the file READ, file PRINT, and
PUT statements.

90
9.3 File Accessing Methods

9.3.1 Reading Files

LINE- I exPrESSION

9

EsS | EXPRESSION @ EXPEESSION Y -)

VAR I ABL-E

120
All Information Presented Here is Proprietary to Digital Research

Files can be read sequentially and randomly using the file READ

READ

IN

statement.

00- F-XPVf,6610N

VAKIAOL~T,

A file READ statement specifiesthef ile' identification number
for thefileto be read, and alist of variables to which data items
read from the file are to be assigned. Optionally, you can specify
arecord number to select the record to be read. Y ou can only use
this option with fixed files.

The file identification number and optional record number can

be any numeric expression. If either expressionisred, itis
converted to an integer value. An execution error occursiif the
file identification number does not evaluate to an integer assigned
to an openfile.

READ #1; A, B$, C%

91

This statement reads the next sequentia record from afile

with afile identification number of 1 and assigns the first three
fieldsto the variables A, B$, and C%. In the case of variables A
and C%, the fields are interpreted as numbers and converted to the
internal format for real and integer variables, respectively.

9.3 File Accessing Methods

Thereis afundamental difference in the way fixed record

length files and stream files are treated when the files are read *
If afile hasfixed records, any fields that the READ statement did
not read are skipped. The next sequential read reads a new record
even if fields were left unread in the previous record.

With astream file, onefield is read after another and no

121
All Information Presented Here is Proprietary to Digital Research

logical organization is assumed. Consider afile with the following
records:

1,2,3,ACRLF
5,6,7,8CRLF
9,10,11,12CRLF
Y ou can use the following READ statements to access thisfile:
READ #1; A,B,C
READ #1; D
READ #1; E,F
If thefile is astream file (no record length was specified when
the file was opened), the variables A through F are assigned the
following values:
A=1B2
D4
E=5F=6

However, if the file was opened with arecord length specified,
the variables are assigned the following values:

A=1B2C=3
D5
E=9F=10

Note: if the records are fixed length records, they are padded with
blanks.

Another difference between reading fixed length files and

stream files occurs when a carriage return is encountered as afield
delimiter. If thefileisfixed and an attempt is made to read past
acarriage return, an execution error occurs. When reading a stream
file, acarriage return is treated just like acomma. Thus, when

122
All Information Presented Here is Proprietary to Digital Research

9.3 File Accessing Methods

reading afixed file, one READ statement reads one record assigning
the fieldsin the record to variablesin the variable list.

A READ statement can select a specific record to read instead

of reading the next sequential record. The file being read must be
afixed record length file. Thistype of accessis called random
access.

READ #1, 12; A, B, C(I,J)

The statement above reads the twelfth record from file 1. The
first three fields in the record are assigned to the variables A, B,
and C(l,J). If arecord in thisfile has |ess than three fields or
the file was a stream file, an execution error occurs.

Thefirst record in afileisrecord one. An execution error

occursif aREAD statement uses a record number of zero. The record
number istreated as an unsigned sixteen bit integer. This means

that "negative" record numbers can be used' for record numbers
greater than 32767.

If an attempt is made to read afile past the last record in

the file, CB-80 reports that the end of file has been reached. The
section on file exception processing explains how you can process an
end of file condition. An end of file exception also occurs when a
random read attemptsto read a record that does not exist.

Sometimes it is necessary to position to a specific record in a
file and then read the file sequentialy. The following statement
positions file 1 to the beginning of record 7. No datais read from
thefile.

READ #1, 7;

An execution error occurs if thefileis astream file.

123
All Information Presented Here is Proprietary to Digital Research

The READ LINE statement issimilar to the INPUT LINE statement
explained in Section 8. The READ LINE statement reads one complete
line of datafrom afile and assigns the information read to a

string variable. Only one variable can be used after the reserved

word LINE and it must be a string variable.

The following statement reads the next sequential record from
the selected file and assigns the entire record up to but not
including the new line characters to the string variable D$.

READ #FILE.NO%; LINE D$

The READ LINE statement can also read a random record, as shown
below.

READ #F%, R%; LINE X$

93
9.3 File Accessing Methods
9.3.2 Writing to Files
@ @ EXPRESSION E
L@ EXPRESSION T@— EXPRESSION —-@ 1 ExPressION
Files can be sequentially or randomly written to using the file
PRINT statement. This section describes unformatted output to
files. Section 10 explains formatted output.
PRINT U6IN& WM6610N

EXPUGGION F-XPMG66ION F-XMO066ION

124
All Information Presented Here is Proprietary to Digital Research

AfilePRINT statement specifies the file identification number

for the file being printed to, and alist of expressionsthat are
evaluated and output to the file. An optional record number can be
specified to select the record to output. Use this option only with
fixed files.

The file identification number and optional record number can
be any numeric expression. If either expressionisred, itis
converted to an integer value. An execution error occursiif the
file identification number does not evaluate to an integer assigned
to an openfile.

PRINT #1; A%, B, C$

This statement prints three fields to the next sequential
record in the file with afile identification number of 1. The
first two fields are separated by commas and the last field is
followed by new line characters.

When a string is output to afile, it is enclosed in quotation
marks. Numbers are output to afile following the same formatting
rules used for output to the display.

With afixed file, sufficient blank characters are output after

the last field and before the new line characters. This ensures
that each record is the length that was specified when the file was
opened. If the data output to the file resultsin arecord length

that exceeds the fixed record length, an execution error occurs.

94 A1
9.3 File Accessing Methods

OPEN "MASTER" AS3
X =21.73

Y =.00007

1% =-72
A$="THISISA FIELD"
PRINT #3; X, Y, 1%, A$

125
All Information Presented Here is Proprietary to Digital Research

Execution of the program above writes the following record to
thefile"MASTER":

21.73,7E-04,-72,"THISISA FIELD"<NL>

In the program above, substitute an OPEN statement with a
record length of 40.

OPEN "MASTER" RECL 40 AS3

The record that is output with the substituted OPEN statement is
shown below:

21.73,7E-04,-72,"THIS IS A FIELD" <NL>

An execution error occursif the record length is less than 34.
A file PRINT statement can direct output to a specific record
inafile. Thistype of accessis called random access. To use
random access, the file must be a fixed record length file.

PRINT #3, 4; C(1), A$+B$

The statement above outputs record four to ' the file using three
as afileidentification number. The record contains two fields.

A file exception occursif afile PRINT statement attempts to
output to afile and the file system has insufficient space.
Section 9.5 explains how you can trap this condition.

Thefollowing file PRINT statements are invalid:

PRINT 3; A Pound signismissing.

PRINT #l,J; Expression list is missing.

PRINT # 2; A+l; B Commas must separate expressions.

95

126
All Information Presented Here is Proprietary to Digital Research

9.3 File Accessing Methods

The PUT statement writes one byte to the selected file. The
byte can be any value between 0 and 255.

WPUT 4~- EVREG6610N EXPRES610N

~ T(D-w-

Both expressions must be numeric; if one of themisareal
expression, it is converted to an integer.

The PUT statement allows binary data to be written to afile.
No delimiters or other characters are added to the data output.

PUT 3, 1%
9.4 Terninating Accessto Files
CB-80 provides two statements that terminate accessto files:

the CLOSE and the DELETE statements. To use these statements, the
f ile must be open.

o EXPRESSION ——

@

EXPIZ566I0ON

DELM

127
All Information Presented Here is Proprietary to Digital Research

The CLOSE statement tells the operating system that no further
access to the fileisrequired. Any interfaces established by the
OPEN or CREATE statement are terminated. All information in the
fileisretained.

CLOSE 3
CLOSE TEMP1%, TEMP2%

The DELETE statement instructs the operating system to remove
the file from the system directory. No information about the file

IS retained.
96

94 Terminating Access To Files
DELETE 1

DELETE INDEX% + 3

The expressionsin CLOSE or DELETE statements must be numeric;
if they evaluate to real values, they are converted to integers.

Each expression must evaluate to avalid file identification number
and that number must refer to an open file. Otherwise, an execution
error OCCurs.

After the CLOSE or DELETE is complete, you can use thefile
identification number again. If an IF END statement, explained in
the following section, is associated with the file identification
number, the association terminates.

9.5 File Exception Processing

128

All Information Presented Here is Proprietary to Digital Research

The IF END statement traps file system exceptions and allows
you to take appropriate action.

END THEN P1ZV--~6 10N

The label reference must refer to alabel defined within the
scope of the IF END statement. The label need not be defined prior
toitsusein an IF END statement.

The IF END statement is an executabl e statement. It must be
executed before it can trap file exceptions. A given IF END
statement only appliesto the one file that the expression selects.

The expression selects the file identification number of the
file for which you want exception processing. The expression must
be numeric; areal expression is converted to an integer.

IFEND #1 THEN 200

IF END # WORK.1% THEN FILE.EOF

97

9.5 File Exception Processing

The IF END statement traps the following types of exceptions:

* READ PAST END OF FILE

* DISK OR DIRECTORY FULL DURING PRINTING TO A FILE

* ATTEMPT TO OPEN A FILE THAT DOES NOT EXIST

129
All Information Presented Here is Proprietary to Digital Research

If any of these exceptions occur, the file processing system
determinesif an IF END statement has been executed for the file
identification number of the file. If an IF END statement isin
effect, execution continues at the statement with the |abel
referenced in the IF END statement. Otherwise an execution error
OCCurs.

IFEND # 3 THEN 200

200 REM PROCESS EXCEPTION FILE 3

When transferring control to the exception processing routine,
al return addresses saved on the LIFO stack are retained.

The following IF END statements are invalid:

IF END 7 THEN 200 Pound sign is missing.

IFEND #7 THEN GOTO QUITE GOTO not alowed.

IF END # 1% THEN PEOF: Label reference cannot
have colon.

98

A program can have any number of IF END statements for the same
file identification number. The most recently executed IF END f or a
given identification number isthe IF END statement in effect when
an exception occurs.

An IF END statement can use afile identification number that

isnot currently being used by an open file. This allowsthe IF END
to trap exceptions when an OPEN statement is executed.

9.6 File Predefined Functions
9.6 File Predefined Functions

9.6.1 The GET Function

130
All Information Presented Here is Proprietary to Digital Research

GET(FILE.ID%)

The GET function accepts one byte of data from the file
selected by the parameter. The parameter must be numeric; if itis
real it is converted to an integer.

GET returns binary data from afile. The value returned by the
GET function is an integer between 0 and 255.

9.6.2 The LOCK Function
LOCK (FI LE. ID %, REC %)

The LOCK function locks arecord in the file selected. Record

locking prevents other programs from updating that record. The, LOCK
function returns the value returned by the operating system when an
attempt is made to lock the record. Normally, a zero means that the
record was successfully locked.

Both arguments must be numeric; if either evaluatesto areal
value, it is converted to an integer.

If your operating system does not support record locking, no
action occurs and LOCK returns a value of zero.

9.6.3 The RENAME Function

RENAME (NEW$,0LD$)
The RENAME function renames afile. The file being renamed,
which isthe first parameter, must not be open. The arguments must
both be string expressions. The value returned by RENAME is an
integer value that istrue (-1) if the rename was successful and
false (0) if the new filename already exists.

An execution error occurs if the new filename already exists

9.6.4 The S ZE Function

The SIZE function returns the size of the file specif ied by the
parameter. The value returned is an integer equal to the number of

131
All Information Presented Here is Proprietary to Digital Research

1024 byte blocks contained in thefile.

The argument must evaluate to a string. The string represents

the filename.
SIZE(FILES)
99
9.6 File Predefined Functions

The file does not need to be open.
SIZE(-NAME")
SIZE(TEMP1$ + ".$$3$")

Some operating systems support wildcard selections for files.

For instance, CP/M allows the asterisk (*) and question mark (?) to
represent matches with a variety of characters. The asterisk.

matches any filename or filetype while the question mark matches any
one character in the filename or filetype. For example "* .BAS'
refersto al f ileswith af iletype of BAS. The SIZE function

accepts wildcard specifications when operating systems such as CP/M
support this feature.

SIZE("*.TMP-)
SIZE("CB-80.0V?-)

If the file contains no data or if the file does not exist,
SIZE returns a zero.

9.6.5 The UNLOCK Function
UNLOCK (FILE. ID%,REC%)
The UNLOCK function performs the opposite action as the LOCK

function. The parameters evaluate to afile identification number
and arecord number. UNLOCK attempts to unlock the selected record.

132
All Information Presented Here is Proprietary to Digital Research

The UNLOCK function returns the value returned by the operating
system where an attempt is made to unlock the record. Normally, a
zero means that the record was unlocked successfully.

Both arguments must be numeric; if either evaluatesto areal
value, it is converted to an integer.

If your operating system does not support record locking, no

action occurs and avalue of zero isreturned. A zeroisaso

returned if the record was aready unlocked when the UNLOCK function
was executed.

End of Section

100

Section 10
Formatted Output

CB-80 allows output generated by a PRINT statement to be

formatted under the control of a Using format string. This form of
aPRINT statement is called a PRINT USING statement. It can be used
with output and can be directed to adisk f ile, the console, or the

line printer.

Section 10.1 explains Using strings and format field

characters. Sections 10.2 through 10.4 give detailed-examples for

Using format field characters. Section 10.4 recapitulates the use

of escape characters and Section 10.5 explains formatted output to

files. The LPRINTER and CONSOLE statements, explained in Section 8,
control output to the console or line printer.

10.1 Using Strings

A print statement that has the reserved word USING followed by
an expression and asemicolon isa PRINT USING statement. (The
syntax diagramsin Sections 8 and 9 show this form of the PRINT
statement.) The Using string must be a string expression that
consists of literal characters, numeric fields, and string fields.

The following example shows Using strings:

133
All Information Presented Here is Proprietary to Digital Research

PRINT USING A$; AB,C

PRINT USING USING. STRING$ (3) ; #1, REC%; A$,B$

PRINT USING "The amount owed is $$# ## ## ##", BALANCE

101

list.

When the program executes, it evaluates the next expression in
the expression list. The Using string is then scanned. Literal
characters are output as they are encountered. When af ield is
located that matches the type of the expression, the expression is
output in the format dictated by the format field.

No delimiters, automatic spacing, or other characters are

output. At the end of the print statement, a new lineis started
unless the expression list endsin a commaor semicolon. In the
case of adisk file with fixed length records, the record is padded
with blanks if necessary prior to outputting the carriage return and
line-feed.

If the expression list contains a string expression, there must

be at least one string field in the Using string, otherwise an
execution error occurs. Likewise, there must be anumeric field in
the using string if there is a numeric expression in the expression

10.1 Using Strings

The numeric and string fields consist of combinations of these
characters. The backsash acts as an escape character to force the
next character to be treated asaliteral character instead of a

field character. This does not cause a conflict with continuation
characters because the compiler treats a backslash character within
astring constant as a character in the string. For example:

PRINT USING "The part isV ####H#"; \
MASTER. PART. NUMBER%

134
All Information Presented Here is Proprietary to Digital Research

Table 10-1 lists the format field characters that CB-80 supports.

Table 10-1. Format Field Characters

Field Function
Character
digit position in anumeric field

$$ float adollar sign in anumeric field

asterisk fill anumeric field
leading or trailing sign in anumeric field

place commas every third digit before decimal
point in a numeric field

decimal point position in anumeric field
exponent position in anumeric field

variable length string field

fixed length string field

single character string field

escape character (treat next character asa
literal)

Sections 10. 2 through 10 .4 give detailed explanations of format
field charaters and their functions.

All Information Presented Here is Proprietary to Digital Research
102
10.2 Numeric Fields

10.2 Numeric Fields

A pound sign (#) indicates one numeric position. For example
the following statement:

PRINT USING "##'; 1%

defines afield of three positionsin which to print 1%. If 1% is
set equal to 3, then the result is printed as:

135
All Information Presented Here is Proprietary to Digital Research

-3
In this example, two blanks and then the numeral threeis
printed. The valueisright justified in the field and filled with
leading blanks.

Note: the underscore in this section indicates that ablank is

]~'rinted in the space.

The following exampleslist the results that occur with other
values of 1%. The Using string remains

1% RESULT
10 10
999 999
-10 -10
1000 %1000
-999 %-999

The last two examples show numbers that do not fit into the

field. In these cases, the overflow isindicated by printing a

percent sign (%) followed by the number in the print format that is
used with printing without a Using string. Another example of field
overflow is shown below.

PRINT USING "##¢"; IOE10
The output from this statement is:

%1.0E 11

103
10.2 Numeric Fields

One decimal point can appear in a numeric field. The following
examples show the use of adecimal point in numeric fields.

VALUE FELD RESULT

136
All Information Presented Here is Proprietary to Digital Research

10.10 ##-## 10.10
100.789 HHHHL 100.79
945.673 HHHHL 945.67

Note: values are rounded to fit the field to the right of the
decimal point.

If no digits exist before the decimal point and there are one
or more digit positionsin the format string before the decimal
point, aleading zero is printed.

VALUE FELD RESULT
0.78 -#H# 780
078 ## 08

0999 # 1

If one or more commas appear in the numeric field, the results

are printed with commas inserted every third digit before the
decimal point. Each commain the numeric field serves as a digit
position specifier and each comma that actually is printed uses one
of the available digit positions. The following examples show the
use of the commain numeric fields.

VALUE FELD RESULT
1000.0 # 1### -## 1,000.0
100.0 # H#H.H# 100.0

7654321 H R 7,654,321
7654321 #HHHHH# 7,654,321
7654321 # AT %7654321

The commas do not have to be placed where they occur in the
output and only one comma causes all the necessary commas to be
printed. However, the number of pound signs and the number of

104
10.2 Numeric Fields-

137
All Information Presented Here is Proprietary to Digital Research

commas determine the total number of positions available in the
field.

Numeric expressions can be printed in an exponential format by
appending one or more up-arrows (-) to the end of the numeric format
field. The exponent always uses four positions when it is printed.

Y ou can use from one to four up-arrows to specify the exponent.

VALUE FIELD RESULT
100 W~ IOE-01
775121 #### -7.75E03
001234 #W~ 123E-05
0o Ww-_ OE-00

Commas are not printed in a numeric field with an exponent. If
commas occur in the field, they are treated as pound signs. In the
first example below, the numeric field has five positions for the
digits. Thisrequires that the number be rounded to five
significant digits. Blank characters are placed in any leading
field positions that are unused.

VALUE FELD RESULT
123456 HHW~ 12346E01
234 23400E-02

Instead of the blanks, an asterisk (*) can be used as afill
character by placing two asterisks at the beginning of a numeric
field, as shown below.

VALUE FELD RESULT
754 TR 754
-21 R 21
12345 **##Ht 12345

The two asterisks, like pound signs, are counted as two numeric
positions. The asterisks are printed in the place of blanks only
if blanks normally fill the field.

138

All Information Presented Here is Proprietary to Digital Research

105
10.2 Numeric Fields

Y ou cannot use an asterisk fill in fields with an exponent
format. A single asterisk is treated as a print character and not
as part of anumeric field.

A dollar sign ($) can be printed to the left of the first digit

in anumeric field. Thisalows you to float a dollar sign; you
specify this by placing two dollar signs at the beginning of a
numeric field.

VALUE FIELD RESULT
10.10 SSHHH Hit $10.10
1000.00 SSHHH Hit $1000.00
1000.00 S H H#it $1,000.00
10000.00 SH HH HH 10,000.00

Blanksfill the-field when afloating dollar sign is a part of

the numeric field. Aswith the asterisk fill, the two dollar signs

are counted as two numeric positions. The last example above shows
that the dollar sign printsonly if aposition is available.

Floating dollar signs cannot be used in fields with an exponent
format. Also, if the numeric expression output into thefield is
negative, the minus sign (-) is printed in place of the dollar sign.

VALUE FIELD RESULT

-10 SbHH Hit -10.00

10 S -Hit $10.00

Note: asingle dollar signistreated as a print character and not
as part of anumeric field.

Normally, a negative number has the sign floated to the left of
thefirst digit in the number being printed. By placing a minus
sign asthefirst or last character of a Using string, the minus
sign can be placed in afixed position in the field.

106

139
All Information Presented Here is Proprietary to Digital Research

10.2 Numeric Fields

VALUE FIELD RESULT
-123.456 HHHE - 123.456
-123.456 -HHHE A -123.456

-12.345 -HHHHE -12.345
0.3456 ##.H#H- -.346
100.0001 -HHH A 100.00

Note: if the sign of the expression is positive, ablank is printed
in place of asign.

10.3 String Fields

There are three types of string fields: single character,

variable length, and fixed length. A single character field is
specified by an exclamation mark (!). The field printsthe first
character of astring expression. The following example prints the
letter A.

PRINT USING "I"; "ABC's

Successive exclamation marks print the first letter of successive
string expressions. In other words, each exclamation mark isa
separate string field.

PRINT USING I''! I"; WIXY11,11UV11,11PT

The output from the preceding statement is:

XU-P<NL>

Thisisthe same notation used in Section 8. The asterisk (*) marks
column 1 and the <NL> indicates that a new line starts.

A single ampersand (&) represents a variable length string
field. The ampersand causes the entire string to print without
editing.

PRINT USING "&"; "THISIS A STRING"

140
All Information Presented Here is Proprietary to Digital Research
The statement above prints:

THISIS A STRING<NL>

The next example uses both variable length and single character
string fields.

107
10.3 String Fields

PRINT USING '1& !. &";"Jm", "Allen"," Smith"
The preceding statement prints:
Jm A. Smith

The third type of string field is the fixed length field. This

field is delimited by slashes (/ /). The size of the field isthe
number of spaces or characters between the slashes plus two. Each
dlash is one position in the fixed field and each character between
the slashes is also counted in the size of the field.

The string field in the following example consists of three
spaces and the two slashes. Thus, the field has atotal length of
five characters. The left five characters of the string expression
are printed.

PRINT USING "HI THERE"
The outputs from this statement is.

HI TH<NL>

Y ou can place any characters between the slashes. The compiler
ignores these characters but you can use them to document the use or
size of the field. The following examples demonstrate this:

PRINT USING NAME /"; NAME$

141

All Information Presented Here is Proprietary to Digital Research

PRINT USING ...5..9/";A$+B$
If the string expression evaluates to a string shorter than a
fixed length field, the expression isleft justified in the field.
Blanks are inserted to fill the field on the right.
PRINT USING "/..5... 9/";"XYZ"
The preceding statement outputs:
XYZ <NL>
Both string and numeric fields can be mixed in a Using string.
PRINT USING 11## XYZ 0; 7.2, "ABC"

The output from this statement is shown below:

7.2 XYZ ABC<NL>

108
10.3 String Fields

The characters XY Z and the space before and after them are
literal characters. They appear in the output just asthey arein
the Using string.
A Using string is reused if the compiler reaches the end of the
Using string and there are still more expressions from the
expression list to be printed. The Using string is reused by
wrapping around to the beginning of the string.

PRINT USING "!"; "AX11,11BX11,'1CX11

The output from the preceding statement follows:

ABC<NL>

The Using string is reused three times to allow each expression

142
All Information Presented Here is Proprietary to Digital Research

to be printed. In the following example, each field in the Using
string is used once and then the first field is used a second time.

PRINT USING "## X 0; 5,11HI1',,6

The output from the preceding statement follows:

5 X HI 6 X <NL>

After the three fields are output, atrailing™_X, " is printed.

As each expression is printed, including the last expression, any
literal characters following the field in the Using string are
output. As soon as a string or numeric field is encountered, no
more characters are printed. Also, if during execution you reach
the end of the Using string, the Using string is not reused just to
print literal characters.

PRINT USING "THISISA NUMBER ## TO PRINT"; 99

The output from this statement is:

THISISA NUMBER 99 TO PRINT<NL>

It is possible for charactersin astring or numeric field to
be treated as literal characters.

PRINT USING 11&## X &";29

The output from this statement is:

&29-X-<NL>

109

The expression is numeric. Thus, every character in the Using
string istreated as aliteral character until anumeric field is
found. In this case, the ampersand is printed as aliteral
character. After the last expression has been printed (in this

10.3 String Fields

143
All Information Presented Here is Proprietary to Digital Research

example there is only one expression), all charactersin the Using
string are printed as literal characters until the next string or
numeric field isfound. This resultsin the "-X-" being printed but
not the sec."nd ampersand.

The following PRINT USING statements are invalid:

PRINT USING A$ No string field but string
expression.

PRINT USING B$ Closing slash is missing.

PRINT USING X+Y Semicolon is missing.

10.4 Escape Characters

The backslash (\) serves as an escape character to force the
next character to be aliteral character. This allows characters
such as pound signs and ampersands (&) to be treated as literal
characters.

PRINT USING 10
The output from this Statement is:

#10<NL>
The backslash causes the first pound sign to be treated as alitera
character. An execution error occurs if the backslash isthe last
character in aUsing string.

A backslash can be printed as aliteral character by placing
two backslashesin the Using string.

PRINT USING "\\#';3
The preceding statement outputs:
\3<NL>

10.5 Print Using to Files

144

All Information Presented Here is Proprietary to Digital Research

ey

EXPRESSION

@

EXPRESSION

EXPRESSION

__.@

-I—@‘

EXPRESS ION

~

PRINT USING statement can also write formatted data to
files. The same Using strings, explained throughout this section,
can be used with file PRINT statements.

_@.__

The following statement outputs one record to the selected
file. Tlerecord i3 terminated with new line characters.

PRINT USING 1&"; #1; A$

110

10.5 Print Using to Files

When the record is written to the file, quotation marks are not
placed around string data and fields are not delimited by commas.

The following statement shows how to output formulated datato a
file using random access.

PRINT USING A$+B$; #F%,REC%; X,Y ,Z

If output is sent to afixed file, the record is padded by
blanks to ensure that it is the proper length.

End of Section

Section 11

The

145
All Information Presented Here is Proprietary to Digital Research

Compiler Operation

This section describes how to use the CB-80 compiler to compile
source programs and explains the workspace requirements of the
compiler. Section 11.2 describes the toggles that modify compiler
operation.

11.1 Compiling a Program
The following command starts the CB-80 compiler:
CB80 TEST

This command compiles TEST, generates a rel ocatable object file, and
lists the program on the console. The listing provides aline

number, the relative address of the code generated by the line, and

the actual source line. TEST isthe name of the source program that
has a default filetype of BAS.

Y ou can override the default filetype of BAS by typing a
complete file specification.

CB80 TEST.PR1

The command above compiles the program TEST.PR1. The sourcefile
cannot have afiletype of REL.

The CB-80 compiler includes three overlays:

CB80.0V1
CB80.0V2
CB80.0V3

All of the overlays must be on the same logical device asthe

executable module: CB80.COM. When using CP/M or MP/M, the module
CB80.COM and all the overlays must be on the logged-in disk. The
source file can be on any logical disk device. For example:

CB80 D:TEST

compiles the program TEST.BAS from drive D..

146
All Information Presented Here is Proprietary to Digital Research

The compiler creates work files with afiletype of TMP on the

same device as the source file unless adrive is specified by a
compiler toggle described in Section 11.2. CB-80 uses the following
temporary files:

PA.TMP

113
11.1 Compiling a Program

QCODE.TMP
DATA.TMP

If any files with these names exist on the work file disk when CB-80
starts, they are deleted. After the compilation is complete, CB-80
deletes any temporary files that are created.

In addition, CB-80 creates a file with the same name as the
source file and filetype REL on the same device as the sourcefile.
If the source program contains errors, CB-80 does not create a
relocatable REL file.

The size of the TMP files varies from program to program but

the amount of temporary space required is approximately the same
amount as the source files being compiled. The REL fileisaso
about the same size as the sourcefile.

on systems with limited disk space, you might have to break the
program into modules and compile each module separately.

11.2 Command Line Directives
The command line that invokes the compiler can pass information
to the compiler by using command line directives. The directives

are alphabetic characters enclosed in square brackets

CB80 TEST [B]

147
All Information Presented Here is Proprietary to Digital Research

The command above compiles TEST.BAS with the B toggle in effect.
The source filename automatically terminates when the compiler
encounters a left square bracket. The toggles can be either lower

or upper-case letters. The following commands have an identical
effect as the one above:

CB80 TEST[B]
CB80 TEST[b]

In all cases, the source file specification is TEST.BAS.

If the source file cannot be located, an error message appears,
and CB-80 returns control to the operating system. The same message
appearsif a%INCLUDE directive cannot find a source file.

A message appears and compilation terminates when other file
system or memory space errors occur. Appendix A lists these

messages.

CB-80 supports the following toggles:

114

11.2 Command Line Directives

Table 11-1. Toggles

Toggle

Action
B Suppress listing of the sourcefile

on the console.
C Change the default INCLUDE file disk.
I Interlist the generated code with the

sourcefile.

L Set the page length for printed
listings.

N Generate code for line numbers.

0 Suppress the generation of the object
(REL) file.

P List the source file on the printer.

R Change the disk that the REL fileis

148

All Information Presented Here is Proprietary to Digital Research

written to.

S Include symbol name information in
the REL file.

T List the symbol table following the
source listing.

U Generate errorsfor undeclared
variables.

W Set the page width for' printed
listings.

X Change the disk used for the work
files.

The B toggle suppresses all listing. Only the statistical data
concerning the size of code and data areas lists on the console. If
CB-80 detects errors, the error and the source line containing the
error are listed.

The B toggle overrides other toggles that result in compiler
output. The B toggle starts the program with a %NOLIST compiler
directive. The %LIST directive overrides the B toggle.

CB80 TEST [B]

If an %INCLUDE directive specifies a filename with no disk
specified, the file is included from the same drive as the source
file. The C toggle can override this assignment. The C toggle

115
11.2 Command Line Directives
changes the default logical drive for INCLUDE files. For example
the following command gets INCLUDE files from drive D:

CB80 TEST [c(d)]

The required drive must be enclosed in parentheses. If the file
specification in the %INCLUDE directive specifies adrive, then the
C toggle has no effect.

149
All Information Presented Here is Proprietary to Digital Research

This toggle allows program devel opment to be independent of
your particular configuration of the hardware.

The | toggle interlists the generated code with the source
statements. The generated code uses standard 8080 mnemonics.

The L toggle changes the page length. The new length must
follow the L and be enclosed in parentheses. The length can be any
unsigned integer constant.

CB80 TEST [L(40)]
Initially the-page length is set to 66.

The N toggle generates code that saves the current line number
for each physical line in the source program. This allows the ERRL
function to return the line number when an error occurs.

The 0 toggle suppresses the generation of the relocatable

object (REL) file. This somewhat reduces the time to compile a
program. The REL fileis not created if the compiler detects
errors.

The P toggle includes the listing to the printer. Each page
has a heading with the page number and the source filename. A form
feed character is printed prior to printing the first page.

The R toggle selects a drive on which to place the REL file.

The Stoggle includesinformation on all program variables and

line numbers in the relocatable object (REL) file. The link editor

can use thisinformation to create a"SYM" file. The SYM file can

be used with Digital Research's symbolic debugging program, Slbr-m,- to
aid in debugging a program.

The T toggle lists the symbol table following the source file
listing.

The U toggle generates an error if avariable name does not
appear in an INTEGER, REAL, or STRING declaration. Thistoggle
locates misspelled identifiers and improves documentation of a

116

150
All Information Presented Here is Proprietary to Digital Research

program by forcing all variables to be declared.

The W toggle changes the width of output to the printer. The
width isinitialy set to 80 columns. The new width must follow the
W and be enclosed in parentheses. The width can be any unsigned

1
11.2 Command Line Directives

integer constant.

CB80 TEST [W(72)]

The X toggle selects adrive for work files. If thereisno X

toggle specified, the work files are placed on the same drive as the
source file. The required drive must be enclosed in parentheses.

It can be either an upper-case or lower-case | etter.

CB80 TEST [X(B)!

Y ou can specify multiple toggles in the command line. For
example, the following command line interlists the generated code
with the source statements, lists the source file at the printer,

sets the page width to 72 columns, and sets the page length to 40
lines.

CB80 TEST [IPW(72)L(140)1

Toggles are processed left to right. If you repeat atoggle
with a conflicting parameter, the last toggle encountered prevails.

End of Section

Section 12 LK-80

LK-80 isalinkage editor that combines rel ocatable object

151
All Information Presented Here is Proprietary to Digital Research

(REL) modulesinto an executable file and optional overlay files.
LK-80 is designed for use with the CB-80 compiler. When used with a
language such as CB-80, LK-80 produces a composite program by
combining the language's default library with the REL modules.

LK-80 can link any program that occupies less than 64K bytes of
memory unless the length of symbols exhausts the space reserved for
the symbol table. It can aso link modules created by arelocatable
assembler such asRMAC.

This section describes version 1 of LK-80 that operates with

Digital Research's CP/M or MP/M operating systems. The CB-80
Licensing Guide explains how to use CBCK to verify that your copy of
LK-80 is correct and has not been altered due to disk copy or
hardware or software failure.

12.1 Operation of LK-80

The general form of an LK-80 command line is shown below.
LK80 [<fn>=I<fn.ft>l,,<fn.ft>] J ([<fn>=1<fn.ft>J,<fn.ft>J) |

The brackets Q]) denote optional portions of the command. The
braces (11) indicate that the enclosed section can be repeated zero
or more times. The symbol "fn" indicates a filename without a
filetype. The symbol "fn.ft" represents a filehame with an optional
filetype and optional command toggles.

The remainder of this section details each option of the LK-80
command line.

12.2 Linking M odules
The following command starts LK-80:
LK80 TEST

The command above links the REL module "TEST.REL" producing an
executable file"TEST.COM". In addition, a symbol location (SY M)
file"TEST.SYM" is produced. The SYM file can be used with Digital
Research's symbolic debugging program SIDT.M. (SID is sold
separately from CB-80.)

152
All Information Presented Here is Proprietary to Digital Research

119
12.2 Linking Modules

When linking CB-80 programs, LK-80 automatically searches the
default disk for the CB-80 run-time library "CB80.IRL". Any library
modules required by the program being linked are combined into the
executable module produced by LK-80. The combination of one or more
REL fileswith alanguage library forms a composite program.

LK-80 prints information on the display about the module being

linked. The next example shows the results of linking asimple
program. The CB-80 program below, "TEST.BAS', can be compiled to
produce aREL file"TEST.REL":

PRINT "THISIS A TEST PROGRAM"
PRINT "IT ISUSED TO DEMO LK-80"
STOP

Use the following command to link the module "TEST.REL":
LK80 TEST

The information that LK-80 prints on the display is shown
below:

LK-80 Version 1.3 Serial No. 000-1234 Copyright ()
1981 Digital Research, Inc. All rights reserved

code size: 1173 (0100-1273)

common size: 0000

data size: 0168 (1280-13E7)

symbol table space remaining: OA4C

The amount of memory allocated to code, common data, and local
datais shown next. In this example, there is no common data. All
the values are hexadecimal numbers.

The amount of symbol table space remaining provides an

153
All Information Presented Here is Proprietary to Digital Research

indication of the number of additional symbols that can be added to
the modules being linked without running out of symbol table space.
Normally LK-80 produces a COM file with the same name as the
REL file. For example, linking the example above resultsin an

executable file"TEST.COM" on the default drive. Y ou can override
this naming convention.

LK80 PAYROLL=B:PAY

The command above links the module "PAY .REL" from drive B but
creates an executable file "PAYROLL.COM" on the default drive.

All Information Presented Here it Proprietary to Digital Research
| -

12.2 Linking Modules
The following command produces the same executable file as the
previous example but the file"PAYROLL.COM" is placed on the B drive
instead of the default drive.

LK80 B:PAYROLL=B:PAY

The names of the modules being linked can have filetypes as
shown below.

LK80 A.REL,B.C
LK-80 assumes that the fileisa REL file unlessthefiletypeis
IRL. This means that, in the preceding example, the module "B.C" is
read assuming it is a relocatable object module. The filetype "C"
isnot ignored, but the file contents are treated as a REL file. If
thisfileisnot arelocatable object file, LK-80 will most likely
abort with the error message:

"LK80 FAILURE 4."

12.3 Linking Multiple RF.L Files

Multiple REL modules can be combined into one executable file

154
All Information Presented Here is Proprietary to Digital Research

by listing a group of REL modules separated by commas.

The following command links the four REL modules, "A.REL",
"B.RELI-, "C.REL", and "D.REL", to an executable file"A.COM". The
first name in the list becomes the name of the COM file.

LK80A,B,C,D

LK-80 can link as many as 60 REL f iles at one time. However,

the total length of the command line cannot exceed 128 characters.
Thus it might be necessary to rename some REL filesto short names
when alarge number of files are being linked. Alternatively, the
command line can be put into afile as discussed below.

The modules are linked in the order they appear in the LK-80
command. If no drive reference is specified, the files are read
from the default drive. However, REL files can be linked from any
drive.

LK80 AP,B:APMENUE,A:APSCN
When multiple modules are linked together, the executable
filename can be specified in the command line. In the example
below, the modules "TEST.REL" and "RTN.REL" are linked together
forming an executable module "MY PROG.COM".

LK80 MYPROG=TEST,RTN
LK-80 can read the command line from afile on the disk. This

feature is included because the 128-byte limit on the length of the
console is exceeded if many modules are included in the same link.

121
12.3 Linking Multiple REL Files

Thereis no limit to the length of acommand lineif it is taken
fromadisk file.

To have LK-80 read the command line from adisk file, use the

155
All Information Presented Here is Proprietary to Digital Research

following command format:
LK80 $ <fn.ft>

The dollar sign must be the first non-blank character following the
letters "LK80." Furthermore, at least one space must separate the

"$" from the file specification (fn.ft) of the file that contains

the link command. The command file, which can have any name or type
you want, can be created with an editor.

Carriage returns, line-feeds, and tab characters can be placed
anywhere in the command file so you can easily read long commands.
They areignored by LK-80 (not treated as delimiters).

In addition, the backslash character "\" causes LK-80 to ignore

all subsequent characters up to and including the next line-feed.

Y ou can use the backslash to include comments and document large
links.

To summarize the command file features of LK-80, suppose that a
file named "command.Ink" has been created and has the following
contents:

LINK command for LIST.COM
Last modified on 14 December 1981

<tab>LIST = A <tab> Root Module <cr,If>
<tab> (UPD) <tab> First Overlay (Updatefile) <cr,If>
<tab> (Al,Bl) <tab> Second Overlay, Currently largest <cr,If>

Executing the command:
LK80 $ command.Ink

has the same effect as the command:
LK 80 LIST = A(UPD) (Al,BI)
12.4 Producing Over lays

LK-80 produces overlay files that a CB-80 CHAIN statement can

156
All Information Presented Here is Proprietary to Digital Research

load and execute.

LK-80 produces overlay (OVL) filesthat preserve variablesin
COMMON including any dynamically created data such as arrays or
strings. To place a REL module in an overlay, enclose the name of
the REL file in parentheses.

124 Producing Overlays

LK80 A(B)
When the preceding command is executed, LK-80 produces two
files:

A.COM

B.OVL

The CCM fileistheroot. Thefile"B.OVL" isan overlay file that
can be loaded only by a CHAIN statement contained in the root
"A.COM".

Chaining to an overlay differs from the conventional concept of
loading overlays. When the root chainsto an overlay, the overlay
replaces the root. Likewise when the overlay chains to another
overlay or back to the root, the new overlay replaces the currently
executing overlay.

CB-80 ensuresthat all library routines are contained in the

root. Chaining preserves the libraries the overlay files use. This
reduces the size of overlays and decreases the time required to load
an overlay file.

An overlay file returnsto the root that loaded it by chaining

back to the COM f ile. The overlay can load another OVL if the
second overlay was aso linked with the same root. The following
example produces aroot "A.COM" and two overlays "B.COM" and
11C.COM".

LK80 A(B)(C)

157
All Information Presented Here is Proprietary to Digital Research

LK-80 can create up to 60 overlays. However the total number
of REL modules linked cannot exceed 60. A particular overlay can
contain multiple REL files.

LK80 A(B)(C,D,E)(F)(G)

The name of each overlay and the name of the root can be
specified in the command line.

LK80 A=ROOT(B=0V1)(C=0V?2)

The command line above produces aroot "A.COM" and two
overlays. "B.OVL" and "C.OVL".

125 LK-80 Toggles

To pass information to LK-80, place toggles between square
brackets.

LK80 TEST[Q]

The command above passes the Q toggle to LK-80. The Q toggle causes
LK-80 to place symbols beginning with a question mark into the SYM

12.5 LK-80 Toggles

file. The Q toggle adds about 100 symbolsto the SYM file. If the
Q toggleis not specified, the SYM file contains only the symbols
defined in the programs being linked. Language developers use a
symbol beginning with a question mark for library names.

12.6 LK-80 Error Messages
LK-80 prints a phrase on the display describing the error when
an error is detected. Control then returnsto CP/M if the error is

afatal error.

The following table describes the error messages that can
occur.

158
All Information Presented Here is Proprietary to Digital Research

Table 12-1. LK-80 Error Messages
Message Meaning

Unresolved external: <symbol name>

The symbol name is defined as ar. ..xternal
symbol but is never defined as a public
symbol.

Out of Directory Space

LK-80 ran out of directory space while
writing the root or overlay file.

Disk Full

LK-80 ran out of disk space while writing
theroot or overlay file.

Multiple Definition: <symbol name>
The symbol name is defined twice.
Too many overlays

More than 60 overlays were specified in
the command line.

Too many modules

More than 60 modules were specified in the
command line.

124

12.6 LK-80 Error Messages

159
All Information Presented Here is Proprietary to Digital Research
Table 12-1. (continued)
Message Meaning
Symbol table overflow

There is not sufficient memory for the
symbol table.

Cannot open source file

A source file specified in the command
line cannot be opened.

12.7 Linking With Assembly L anguage

LK-80 links modules produced by Digital Research's RMAC
Relocating Macro Assembler with REL files created by CB-80. The
same commands explained at the beginning of this section apply.

An assembly language module that is linked with CB-80 must not
contain any initialized data because of the run-time environment CB
80 requires. Any data that must haveinitial values can be placed

in the code segment.

Note: that using assembly language routines makes a program machine
dependent.

12.8 Passing Parameters

CB-80 passes allparameters on the 8080--hardware stack. The
last entry on the stack contains the return address. Parameters are
stored below the return address. When aroutineis called, the
first parameter is placed on the stack first. Each remaining
parameter from left to right is then placed on the stack.

12.8.1 Integer Parameters

Integers are passed on the hardware stack as sixteen bit signed
integers. The integers are stored with the low-order byte in the

125

160
All Information Presented Here is Proprietary to Digital Research

lower memory address.

12.8 Passing Parameters
12.8.2 Real Parameters

Real numbers are passed on the hardware stack as eight byte
floating point decimal numbers.

Each of the seven mantissa bytes contain two binary coded
decimal digits. The left four bits of each byte in the mantissa
contain the most significant digit in that byte. The mantissais
normalized so that the most significant digit is always non-zero.

The left most bit of the exponent is the sign of the mantissa.
If the bit is aone, the mantissais negative, and if it is a zero,
the mantissais positive.

The remaining seven bits of the exponent represent the power of
ten multiplier to be applied to the mantissa. The actual multiplier
used is determined by subtracting 64 from the seven low-order bits
of the exponent byte.

A number with avalue of zero is represented by setting the
exponent byte to 0. The mantissaisignored. All eight bits of the
exponent must be zero for the value to be zero.

161
All Information Presented Here is Proprietary to Digital Research

12.8.3 Sring Parameters

Strings are passed by placing a pointer to the actual string on
the hardware stack. The pointer is an unsigned sixteen bit integer.

| LOWBYTEIHIGHBYTEI

If the value of the pointer is zero, the string is anull

string. otherwise the pointer is the address of the string. The
first two bytes of the string contain an allocation bit and a
fifteen bit string length. The left most bit of the first byteis
the allocation bit.

If the alocation bit is a one, the string must be returned to

the CB-80 pool of available storage prior to returning from the
assembly language routine, and after all references to characters
within the string have occurred. The ?RELS library routine returns

12.8 Passing Parameters

string space to CB-80.

If the 8080 registers H and L contain the pointer to the string
passed as the string parameter, the following assembly language
statements release a string with its allocation bit set.

MOV AH IFPTR=0THEN

ORA L NO RELEASE
RZ

MOV AM GET HIGH BYTE OF LNG

ORA A JISALLOCBIT =17

RP ;IFNOT NO RELEASE

CALL ?RELS ;RELEASE THE STRING
RET

If the allocation bit is a zero, the charactersin the string

should not be changed since the calling program still has access to
the string. If the allocation bit is O, the string cannot be

released.

12.9

162
All Information Presented Here is Proprietary to Digital Research

Returning Valuesto CB-80

An assembly language routine can return integer, real, or

string values to CB-80. Prior to returning to CB-80, all parameters
passed on the stack must have been removed and the stack pointer
adjusted accordingly.

Aninteger number isreturned inregistersH and L.

12.10

127

Real numbers are returned by placing a pointer in registersH
and L to an eight byte data area containing the real number to be
returned.

The returned number must be stored in the format described
above. The H and L registers contain the address of the exponent

byte.

Strings are returned by placing a pointer to the string in
registers H and L. The string must have been alocated by the CB-80
dynamic storage management routines.

The allocation bit of the returned string should be set to one.
This ensures that the space is reclaimed when it is no longer
required.

Dynamic Storage Allocation Routines
The CB-80 run-time library provides four routines that allow

you to allocate and release memory and to determine the amount of
space that is available for allocation.

12.10 Storage Allocation Routines

The ?GETS routine allocates space. The number of bytes of
memory required is placed in registers H and L. 32,762 bytesis
the maximum amount of space that can be allocated.

?GETS returns a pointer in registers H and L to a contiguous

163

All Information Presented Here is Proprietary to Digital Research

block of memory. There is no restriction on what can be placed in
the allocated memory, but the adjacent space at either end of the
area cannot be modified. If thereisinsufficient space, an 110M"
error OCCurs.

The ?REL S routine releases previously alocated memory. The
address of the space being released is placed in registersH and L.
?RELS does not return avalue.

The ?MFRE routine returns the size of the largest contiguous
space that can be currently alocated using the ?ZGETS routine. The
value returned is an unsigned integer; it is placed in registers H
and L.

The ?IFRE routine returns the total amount of dynamic space
that is currently unallocated. The returned value is an unsigned
integer and it isplaced in registersH and L.

12.11 Arithmetic Routines

The CB-80 run-time library provides routines f or--signed integer
multiplication and division. The 2IMUL routine multiplies the
signed integer in registers D and E by the signed integer in
registersH and L. Theresult isplaced in registersH and L.

The ?IDIV routine divides the signed integer in registers D and
E by the signed integer inH and L. The result isplaced in
registersH and L.

End of Section

Appendix A CB-80 Reserved Words

ABS AND AS ASC ATN

ATTACHP BUFF CALL CHAIN CHR$

CLOSE COMMAND$ COMMON CONCHAR% CONSOLE
CONSTAT% Cos CREATE DATA DEF

DELETE DETACH DIM ELSE END

164
All Information Presented Here is Proprietary to Digital Research

ERR ERRL ERROR EQ EXP

EXTERNAL FEND FLOAT FOR FRE
GE GET GO GOSuUB GOTO

T IF INITIALIZE INKEY INP
INPUT INT INT% INTEGER LE

LEFT$ LEN LET LINE LOCK

LOCKED LOG LPRINTER LT MATCH
MFRE MID$ MOD NE NEXT
NOT ON OPEN OR OuUT
PEEK POKE POS PRINT PUBLIC

PUT RANDOMIZE READ READONLY REAL

RECL RECS REM REMARK RENAME
RESTORE RETURN RIGHT$ RND SADD
SGN SIN SIZE SQR STEP

STOP STR$ STRING SUB TAB

TAN THEN TO UCASE$ UNLOCK
UNLOCKED USING VAL VARPTR WEND

WHILE WIDTH XOR %CHAIN Y%EJECT
%INCLUDE %LIST %NOLIST %PAGE

End of Appendix

Appendix B Collected Syntax Diagrams

165
All Information Presented Here is Proprietary to Digital Research

This appendix contains the syntax diagrams that describe the
complete syntax of CB-80.

CONSTANT

LETTER

LETTER

L

NOM BER

Y

Y

166
All Information Presented Here is Proprietary to Digital Research

STATEMENT

— STMT LABEL— > [F STATEMENT

1 5 STATEMENT

STMT LABEL—

— INTCON

Y

ﬁé@&

STMT &ROVFP

167
All Information Presented Here is Proprietary to Digital Research

STATEMENT

— STMT LABEL- i ™ [FSTATEMENT —-

> 5 5TATEMENT

S5TMT LABEL—- Q

- INTCON >

a:é

S5TMT eRkoVP

- STATEMENT ———-v-

168
All Information Presented Here is Proprietary to Digital Research

@ o EXPRESSION

EXPRESSION -

PEC &ROUF

|

:
I

PDATA

—@ CONSTANT EOL

169
All Information Presented Here is Proprietary to Digital Research

SINGLE LINE FUNCTION

() O resern

MULTIPLE LINE FUNCTION

PUBLIC

P

OFPERAND
—_— EXPRESSION

CONSTANT

VARIABLE

FUNCREF

170
All Information Presented Here is Proprietary to Digital Research

FUNCREF

—#{ FUNCREF

/)
——@ EXPRESHON _)/
{9)
\Z
VARIABLE
D _
_/
@ I EXPRESSION)
2O,
EXPREASION

— L FACTOR -

OR
L FACTOR X/O‘z

171
All Information Presented Here is Proprietary to Digital Research

A FACTOR.
— ATERM
ATERM [9'é//
ATERM
ELEMENT |- -

ELEMENT @-—

AS516NMENT STATEMENT

———»r{1e7)| vaRiABLE ——@—v EXPRESSION ——

172
All Information Presented Here is Proprietary to Digital Research

All Information Presented Here is Proprietary to Digital Research

IF STATEMENT

173

— IFCOND

R STATEMENT

R STATEMENT

IFCOND

R STATEMENT

IFCOND

EXPRESSION

LABEL— H—————
ELSE STATEMENT -
(FLe8)
_/ R STATEMENT W\
5 STATEMENT
N
| e

174
All Information Presented Here is Proprietary to Digital Research

CALL
EXPRESSION —
\2)
RETURN
(e ———
ON

EXPRESSION | LasEL -

175
All Information Presented Here is Proprietary to Digital Research

ON ERROR

(o)~ (erR)(eoro)~| 1azeL |
sTOP
CHAIN

EXPRESSION ————

176
All Information Presented Here is Proprietary to Digital Research

INPUT
@ ©7 @ VARIABLE
' 5
LAzINTER.
@
CONSOLE
@
DeTAaCH

177
All Information Presented Here is Proprietary to Digital Research

PRINT

@ @ EXPRESSION — " EXPRESSION > —
POKE

EXPRES5ION —@~ EXPRESSION |—>
ouT

EXPRESSION —»@—D EXPRESSION >

178
All Information Presented Here is Proprietary to Digital Research

READ
>@ VAR |IABLE >
{9 Je—r
RESTORE
{reow) _
N
RANDOMIZE

RANDOMIZE

179
All Information Presented Here is Proprietary to Digital Research

EXPRESSION

B[O

EXPRESSION EXPRESSION

%] FEAD ONLY
-

.

NIT

—»| EXPRESS ION

180
All Information Presented Here is Proprietary to Digital Research

READ FULE

A

EXPRESSION @—. EXPRESSION i=®_ﬂ

VARIABLE -

__...@__

PRINT FiLE

@ @ EXPRESSION

—.@_. EXPRESAION T@— EXPRESSION ——-@ 7 exPeession —

181
All Information Presented Here is Proprietary to Digital Research

PuT

EXPRESSION r@- EYPRESSION 1—@- EXPRESSION

F TERM

_@ ~ BRELION —

IF END

° @ e EXPRESSION ——@—v LABEL [

182

All Information Presented Here is Proprietary to Digital Research

Appendix C Compiler Error M essages

The compiler prints the following messages when afile system
error or memory space error occurs. In each case, control returns

to the operating system.

Table C-1. File System and Memory Space Errors

Error

COULD NOT OPEN FILE: <file>

INCLUDES NESTED TO DEEP: <file>

SYMBOL TABLE OVERFLOW

INVALID FILE NAME: <filename>

DISK READ ERROR

CREATE ERROR: <file>

149

Meaning

The filename following the message cannot be
located in the file system directory.

The filename following the message occurred in
an %INCLUDE directive that exceeds the allowed
nesting of %INCLUDE directives.

The available memory for symbol table space has
been exceeded. Break the program into modules
or use shorter symbol names.

The filename is not valid for your operating
system.

The operating system reports adisk read error.

The file cannot be created. Normally this
means there is no directory space on the disk.

Appendix C Compiler Error Messages

Table C-1. (continued)

Error Meaning

DISK FULL The operating system reports that no additional
Space is available to write temporary or output

183
All Information Presented Here is Proprietary to Digital Research

files.
INVALID COMMAND LINE The CB-80 command lineisincorrect. This
message also appearsif you did not specify a
sourcefile.

CLOSE OR DELETE ERROR The operating system reports that it cannot
close afile. Thisoccursif diskettes are
switched during compilation.

If the compiler detects an internal failure, the following
error message appears:

FATAL COMPILER ERROR XXX where XXX isathree digit number. Please advise Digital
Research of the error and the circumstances under which it
occeurs.

The following error messages indicate afatal compiler error
occurred during compilation of a program. Compilation continues
after the error is recorded.

Table C-2. Compilation Error Messages

Error Meaning

1 Aninvalid character was detected in the source
program. The character was ignored.

2 Invalid string constant. The string is too
long or contains a carriage return.

3 Invalid numeric constant. An integer constant
of zero is assumed.

4 Undefined compiler directive. This source line
isignored.

5 The %INCLUDE directive is missing afilename.

This source lineisignored.

150
Appendix C Compiler Error Messages

Table C-2. (continued)

184
All Information Presented Here is Proprietary to Digital Research

Error Meaning

6 Statements found after an END.

7 Not used.

8 A variable was used without being defined and
the U toggle was used during compilation.

9 The DEF statement is not terminated by a
carriage return. A carriage return was
inserted.

10 A right parenthesisis missing from the
parameter list. A right parenthesis was
inserted.

11 A comma was expected in the parameter list. A
comma was inserted.

12 Anidentifier was expected in the parameter
list.

13 The same name is used twice in a parameter
list.

14 A DEF statement occurred within amultiple line
function. Multiple line functions cannot be
nested. The statement was ignored.

15 A variable was expected.

16 The function name was missing following the
keyword DEF. The DEF statement was ignored.

17 A function name was used previously. The DEF
statement isignored.

18 A FEND statement was expected. A FEND was
inserted.

19 There are too many parametersin amultiple
line function.

20 Inconsistent identifier usage. An identifier
cannot be used as both alabel and avariable.

21 Additional data existsin the source file
following an END statement. Thisis the
logical end of the program.

151
Appendix C Compiler Error Messages

Table C-2. (continued)

185
All Information Presented Here is Proprietary to Digital Research

Error Meaning

22

23

24

25

26

27

28

29
30

31

32

33

35

36

37

152

Data statements must beginon anew line. The
remainder of this statement was treated as a
remark.

A reserved word appears in adeclaration list.
The reserved word was ignored.

A function name appears in a declaration within
amultiple line function other than the

multiple line function that defines this

function name.

A function call was encountered with the
incorrect number of parameters.

A left parenthesis was expected. A eft
parenthesis was inserted.

Invalid mixed mode. The type of the expression
IS not permitted.

Unary operator cannot be used with this
operand.

Function call has improper type of parameter.
Invalid symbol follows a variable, constant, or
function reference.

This symbol cannot occur at thislocation in an
expression. The symbol isignored.

operator ismissing. Multiplication operator
inserted.

Invalid symbol encountered in an expression.
The symbol isignored.

A right parenthesis was expected. A right
parenthesis inserted.

A subscripted variable is used with the
incorrect number of subscripts.

Anidentifier isused asasimplevariable

with previous usage as a subscripted variable.
Anidentifier is used as a subscripted variable
with previous usage as an unsubscripted
variable.

186
All Information Presented Here is Proprietary to Digital Research

Appendix C Compiler Error Messages
Table C-2. (continued)

Error Meaning

38 A string expression is used as a subscript in
an array reference.

39 A constant was expected.

40 Invalid symbol found in declaration list. The
symbol is skipped.

41 A carriage return was expected in a declaration
statement. A carriage return was inserted.

42 Commais missing in declaration list. A comma
inserted.

43 A common declaration cannot occur in amultiple
linefunction. The statement isignored.

44 Anidentifier appearsin adeclaration twicein
the main program or within the same multiple
line function.

45 The number of dimensions specified for an array
exceeds the maximum number allowed. A value of
one was used. This might generate additional
errors in the program.

46 Right parenthesis missing in the dimension
specification within a declaration. A right
parenthesis was inserted.

47 The same identifier is placed i COMMON twice.

438 An invalid subscripted variable reference was
encountered in adeclaration statement. An
integer constant isrequired. A value of 1 was
used.

49 Aninvalid symbol following a declaration or
the symbol in thef irst statement in the
programisinvalid. The symbol isignored.

50 Aninvalid symbol was encountered at the
beginning of a statement or following alabel.

51 An equal sign was expected in assignment. An
egual sign was inserted.

187
All Information Presented Here is Proprietary to Digital Research

153
Appendix C Compiler Error Messages

Table C-2. (continued)
Error Meaning

52 A name used as alabel was previously used at
thislevel as either alabel or variable.

53 Unexpected symbol following a simple statement.
The symbol was ignored.

54 A statement was not terminated with a carriage
return. Text wasignored until the next
carriage return.

55 A function name was used in the left part of an
assignment statement outside of amultiple line
function. Only when the function is being
compiled can its name appear on the left of an
assignment statement.

56 A predefined function name was used as the | eft
part.of an assignment statement.

57 In an IF statement, a THEN was expected. A
THEN was inserted.

58 A WEND statement was expected. A WEND was
inserted.

59 A carriage return or colon was expected at the
end of aWHILE loop header.

60 In a FOR loop header the index is missing. The
compiler skipped to end of this statement.

61 In a FOR loop header, a TO was expected. A TO
was inserted.

62 An equal sign was missing in a FOR loop header
assignment. An equal sign was inserted.

63 Expected carriage return or colon at end of FOR

loop header.

64 A NEXT statement was expected. A NE XT was
inserted.

65 Not used.

66 The variable that follows NEXT does not match
the FOR loop index.

188
All Information Presented Here is Proprietary to Digital Research

154
Appendix C Compiler Error Messages

Table C-2. (continued)

Error meaning

67 A NEXT statement was encountered without a
corresponding FOR loop header.

68 A WEND statement was encountered without a
corresponding WHILE loop header.

69 A FEND statement was encountered without a
corresponding DEF statement. This error
indicates that the end of the source program
was detected while within amultiple line
function.

70 The PRINT USING string is not of type string.

71 A delimiter ismissing in aPRINT statement. A
semicolon was inserted.

72 A semicolon was expected in an INPUT prompt. A
semicolon was inserted.

73 A delimiter ismissing in an INPUT statement.
A commawas inserted.

74 A semicolon was expected following afile
reference. A semicolon was inserted.

75 The prompt in an INPUT statement was not of
type string.

76 Inan INPUT LINE statement, the variable
following the keyword LINE was- not a string
variable.

77 Inan INPUT statement a comma was expected
between variables. A comma was inserted.

78 The keyword AS was missing in an OPEN or CREATE
statement. AS was inserted.

79 The filename in an OPEN or CREATE statement was
not a string expression.

80 A delimiter ismissing in a READ statement. A
comma was inserted.

81 In aGOTO, GOSUB or ON statement, a label was
expected. Thistoken can be an identif ier
previously used as avariable.

189
All Information Presented Here is Proprietary to Digital Research

155
Appendix C Compiler Error Messages

Table C-2. (continued)

Error Meaning

82 Thelabel isaGOTO statement is not defined.
If the labdl is used in afunction, it must be
defined in that function.

83 A delimiter is missing in afile READ
statement. A comma was inserted.

84 In aREAD LINE statement, the variable
following the keyword LINE is not a string
variable.

85 Thelabel in an IF END statement is not
defined.

86 A pound sign (#) was expected in an IF END
statement. A pound sign was inserted.

87 A THEN was expected in an IF END statement. A
THEN was inserted.

88 InaPRINT statement, the semicolon is missing
following ausing string. A semicolon was
inserted.

89 In an ON statement, a GOTO or GOSUB was
expected. A GOTO was assumed.

90 Theindex of aFOR loop header is of type
string. The index must be an integer or real
value.

9 The expression following the keyword TO in a

FOR loop header is of type string. The
expression must be an integer or real value.

92 The expression following the keyword STEP in a
FOR loop header is of type string. The
expression must be an integer or real value.

93 A variablein aDIM statement has been defined
previously as other than a subscripted
variable.

9 Anidentifier was expected as an array namein

aDIM statement. The entire statement was
ignored.

190
All Information Presented Here is Proprietary to Digital Research

95 A left parenthesis was expected ina DIM
statement. A left parenthesis was inserted.

156
Appendix C Compiler Error Messages

Table C-2. (continued)

Error Meaning

96 A right parenthesis was expected in a DIM
statement. A right parenthesis was inserted.

97 The maximum number of dimensions allowed with a
subscripted variable was exceeded.

98 A comma was expected in a POKE statement. A
comma was inserted.

99 The index of a FOR loop header was not asimple
variable.

100 Ina CALL statement, a multiple line function
name was expected.

101 A file PRINT statement was terminated with a
comma or semicolon.

102 A DIM statement is missing for this subscripted
variable.

103 Expected a commain the label list associated
with an ON GOTO or ON GOSUB statement. A comma
was inserted.

104 Expected aGOTO in an ON ERROR statement. A
GOTO was inserted.

105 Expected acommain aPUT statement. A comma
was inserted.

106 The expression in an IF statement was of type
string. An integer or real expression is
required.

107 The expressionin aWHILE loop header was of
type string. An integer or real expressionis
required.

108 In an OPEN or CREATE statement, the filename
was missing.

109 In an OPEN or CREATE statement, the expression

191
All Information Presented Here is Proprietary to Digital Research

following the reserved word AS was missing.

110 A multiple line function called itself.

111 A semicolon separates expressionsin a file
PRINT statement. A commais substituted for
the semicolon.

157
Appendix C Compiler Error Messages
Table C-2. (continued)
Error Meaning
112 A file PRINT statement does not have an
expression list.
113 A TAB functionisused in afile PRINT
statement expression list.
114 Not used.
115 A GO not followed by aTO or SUB. GOTO is
assumed.
116 An OPEN or CREATE statement specifies both
UNLOCKED and LOCKED access control.
117 A CREATE statement uses the READ ONLY access
control.
End of Appendix
158
Appendix D

Execution Error Messages

The following warning message might be printed during execution
of a CB-80 program:

IMPROPER INPUT - REENTER

This message occurs when the fields you enter from the console
do not match the fields specified in the INPUT statement. Following

159

192
All Information Presented Here is Proprietary to Digital Research

this message, you must reenter all values required by the input
Statement.

Execution errors cause a two-letter code to be printed. The
following table contains valid CB-80 error codes.

If an error occurs with a code consisting of an asterisk

followed by aletter such as*R, a CB-80 library has failed. Please
notify Digital Research of the circumstances under which the error
occurred.

Table D-1. CB-80 Error Codes

Code Error
AC Theargument in an ASC function isa null
string.

BN The vauefollowing the BUFF optionin an OPEN
or CREATE statement islessthan | or greater

than 128.
CE The filebeingclosed cannot be found inthe
directory. This occursif the file has been

changed by the RENAME function.

CM The filespecifiedinaCHAIN statement cannot
be found in the selected directory. If no
filetypeispresent, the compiler assumesa
type of OVL.

CT The filetype of thefile specified in a CHAIN
statement is other than COM or OVL.

CU A close statement specifiesa file
identification number that is not active.

DF An OPEN or CREATE statement uses afile
identification number that is already used.

Appendix D Execution Error Messages
Table D-1. (continued)
Code Error

DU A DELETE statement specif iesaf ile

DW

DZ
EF

ER

FR

FU

LN

ME

MP

NE

NF

160

193
All Information Presented Here is Proprietary to Digital Research

identification number that is not active.

The operating system reports that thereisno
disk or directory space available for thefile
being written to and no IF END statement isin
effect for the file identification number.
Division by zero was attempted.

An attempt is made to read past the end of file
and no IF END statement isin effect for the
file identification number.

An attempt is made to write arecord of length
greater than the maximum record size specified
in the OPEN or CREATE statement for thisfile.
An attempt is made to rename afileto a
filename that already exists.

An attempt was made to access afile that was
not open.

A filenamein an OPEN or CREATE statement or
with the RENAME function isinvalid for your
operating system.

A record number of zero is specified in aREAD
or PRINT statement.

The argument in the LOG function is zero or
negative.

The operating system reports an error during an
attempt to create or extend afile. Normally,

this means the disk directory isfull.

The third parameter inaMATCH function is zero
or negative.

A negative value is specified for the operand

to the left of the power operator.

A fileidentification islessthan 1 or greater
than the maximum number allowed. See Appendix

Appendix D Execution Error Messages

Table D-1. (continued)

194
All Information Presented Here is Proprietary to Digital Research

Code Error

NN Anattempt to print anumeric expression with a
PRINT USING statement fails because there is
not anumeric field in the USING string.

NS Anattempt to print a string expression with a
PRINT USING statement fails because there is
not astring field in the USING string.

OD A READ statement is executed but there are no
DATA statementsin the program, or al data
itemsin al the DATA statements have already
been read.

OE Anattempt is made to OPEN afile that does not
exist and for which no IF END statement isin
effect.

OF Anoverflow occurs during areal arithmetic
calculation.

OM The program runs out of dynamically allocated
memory during execution.

RB Random accessis attempted to afile activated
with the BUFF option specifying more than one
buffer.

RE An attempt is made to read past the end of a
record in afixed file.

RU A randomread or print is attempted to a stream
file.

SL A concatenation operation resultsin astring
greater than the maximum allowed string length.

SQ A attempt is made to calculate the square root
of a negative number.
Ss The second parameter of a MID$ function is zero

or negative, or the last parameter of a LEFTS,
RIGHTS, or MID$ is negative.

TL A tab statement contains a parameter less than
1.

UN A PRINT USING statement is executed with anull
edit string, or an escape character (\) isthe
last character in an edit string.

195
All Information Presented Here is Proprietary to Digital Research

Appendix D Execution Error Messages

Table D-1. (continued)
Code T Error
WR An attempt is made to write to a stream file
after it had been read, but before it had been
read to the end of file.

End of Appendix

196

All Information Presented Here is Proprietary to Digital Research

Appendix E
Implementation Dependent Values

The following implementation dependent values apply to CB-80
version 1 for use with CP/M version 2 and MP/M-80T.M. versions 1 and

2:

Table E-1. Implementation Dependent Values

Parameter

Initial page width for compiler
output

Initial page length for compiler
output

Maximum,number of errors
maintained

Maximum nesting of include
Maximum number of formal parameters
Maximum number of subscriptsin an
array is

Maximum unique identifier length
Maximum number of charactersin
string constant

Maximum length of Global and
External names

Maximum nesting of FOR loops
Maximum nesting of WHILE loops
Number of files that can be open

at onetime

File buffer sizein bytes

Vaue

80

66

95

50
255

6

13
39
20

128

Minimum

15
15

31
255

12

The minimum values are the minimum that are used in any CB-80

implementation.

The following extensions exist in CB-80 version 1.3 to provide
compatibility with CBASIC version 2. Note that future versions of
CB-80 might not support these extensions.

197
All Information Presented Here is Proprietary to Digital Research

163
Appendix E Dependent Values

o] The LPRINTER statement accepts a WIDTH option to be consistent
with CBASIC. Thewidth isignored.

o] Integer and real dataisinitialized to O; strings are
initialized to null strings.

o] The INPUT prompt string can be any expression; thef irst
operand must be a string constant.

o] A file OPEN or CREATE statement accepts a RECSfield for
compatability with CBASIC. The expression isignored.

o] Y ou can use the reserved words LT, GT, GE, LE, EQ, and NE in
place of the relational operators <, >, <=F>=01 =, and <>.

o] CB-80 supports the following form of an IF statement,
IF <expression> THEN <label>
but the'<label> must be a numeric label.

End of Appendix

164

Appendix F

Glossary
address: Location in memory.

ambiguousfile specification: File specification that contains
either of the Digital Research wildcard characters, ?or *, in the
filename or filetype or both. When you replace charactersin afile
specification with these wildcard characters, you create an
ambiguous filespec and can reference more than onefilein asinge
command line.

198
All Information Presented Here is Proprietary to Digital Research

applications program: Program that needs an operating system to
provide an environment in which to execute. Typical applications

programs are business accounting packages, word processing, and

mailing list programs.

argument: Variable or expression value that is passed to a
procedure or function and substituted for the dummy argument in the
function. Sade as "actual argument™ or "calling argument”. Used
interchangeably with "parameter”.

array: Datatypethat isitself acollection of individual data
items of the same data type. Term used to describe aform of
storing and accessing data in memory, visualized as matrices. The
number of extents of an array is the number of dimensions of the
array. A onedimensional array is essentially alist.

ASCII: Acronym for American Standard Code for Information
Interchange. ASCII is a standard code for representation of the
numbers, letters, and symbols that appear on most keyboards.

assembler: Language trandator that translates assembly language
statements into machine code.

assignment statement: Statement that assigns the value of an
expression on the right side of an equal sign to the variable name
on the left side of the equal sign.

back-up: Copy of afile or disk made for safe keeping, or the
creation of thefile or disk.

binary: Base two numbering system containing the two symbols zero
and one.

bit: Common contraction for "binary digit". "Switch" in memory
that can be set to on (1) or off (0) . Eight bits grouped together
comprise a byte.

165
Appendix F Glossary

199
All Information Presented Here is Proprietary to Digital Research

buffer: Area of memory that temporarily stores data during the
transfer of information.

byte: Unit of memory or disk storage containing eight bits.
call: Transfer of control to a computer program subroutine.

chain: Transfer of control from the currently executing program to
another named program without returning to the system prompt or
invoking the run-time monitor.

code: Sequence of statements of a given language that make up a
program.

command: Instruction or request for the operating system or a

system program to perform a particular action. Generaly, a Digital
Research command line consists of a command keyword, a command tail
usually specifying afile to be processed, and a carriage return.

common: Variables used by a main program and all programs executed
through a chain statement.

compiler: Language trandator that trandlates the text of a high
level language into machine code.

compiler directive: Reserved words that modify the action of the
compiler.

compiler error: Error detected by the compiler during compilation;
usually caused by improper formation of language statement.
compiler toggle: "Switch" to modify the output of the compiler.
concatenate: Join one string to another or one file to another.

concatenation operator: Symbol peculiar to agiven language that
instructs the compiler to combine two unique data items into one.

console: Primary input/output device. The console consists of a
listing device such as a screen and a keyboard through which the
user communicates with the operating system or the applications
program.

constant: String or numeric value that does not change throughout
program execution.

200
All Information Presented Here is Proprietary to Digital Research

control character: Nonprinting character combination that sends a
simple command to the operating system or applications program. To
enter a Control character, press the Control (CTRL) key on your
terminal and strike the character key specified.

control statement: Language statement that transfers control or
directs the order of execution of instructions by the processor.
cursor: One-character symbol that can appear anywhere on the video

All Information Presented Here is Proprietary to Digital Research
166
Appendix F Glossary

screen. The cursor indicates the position where the next keystroke
at the console will have an effect.
data: Information; numbers, figures, names and so forth.

data base: Large collection of information, usually covering
various aspects of related subject matter.

data file: Nonexecutable file of similar information that generally
requires acommand file to processit.

data structure: Mechanism, including both storage layout and access
rules, by which information can be stored and retrieved within a
computer system. Data structures can reside in memory or on
secondary storage. System tables such as symbol tables, matrices of
numerical data, and datafiles are examples of data structures.

datatype: Class or use of the data; for example, integer, rea or
string.
debug: Remove errors from a program.

default: Values, parameters or options a given command assumes if
not otherwise specified.

delimiter: Special characters or punctuation that separate
different itemsin acommand line or language statement.

dimension: Refersto the number of extents of an array. A one
dimensional array is essentially alist of the elements of the

201
All Information Presented Here is Proprietary to Digital Research

array. A two dimensional array can be visualized as a matrix of
rows and columns of storage space for the elements of the array. A
three dimensional array can be thought of as a geometric solid
having volume, and so forth.

directory: Portion of adisk that contains entries for each file on
the disk. In response to the DIR command, CP/M and MP/M systems
display the file specifications stored in the directory.

disk, diskette: Magnetic media used to store information. Programs
and data are recorded on the disk in the same way that music is
recorded on a cassette tape. The term "diskette" refers to smaller
capacity removable floppy diskettes. The term "disk" can refer to a
diskette, aremovable cartridge disk, or afixed hard disk.

disk drive: Periphera device that reads and writes on hard or
floppy disks. CP/M and MP/M systems assign aletter to each drive
under their control.

drive specification: Alpha character A-P followed by a colon that
indicates the CP/M or MP/M drive reference for the default or
specified drive.

dummy argument: Argument used in the definition of acommand or
language statement (especially afunction) that holds a place that

167
Appendix F Glossary

will later contain a usable "actua" or "calling" argument that is
passed to the function by a calling statement. Same as "formal
argument.”

editor: Utility program that creates and modifiestext files. An
editor can be used to create documents or code for computer
programs.

element: Individual dataitem in an array.

executable: Ready to run on the processor. Executable codeis a
series of instructions that can be carried out on the processor.
For example, the computer cannot "execute" names and addresses, but

202
All Information Presented Here is Proprietary to Digital Research

it can execute a program that prints names and addresses on mailing
labels.

execute a program: Start a program running. When the program is
executing, a process is executing a sequence of instructions.

FCB: File Control Block. Structure used for accessing files on
disk. Contains the drive, filename, filetype and other information
describing afile to be accessed or created on the disk.

field: Portion of arecord; length and type are defined by the
programmer. One or more fields comprise arecord.

file: Collection of related records containing characters,
instructions or data; usually stored on adisk under aunique file
spec if ication.

filename: Name assigned to afile. The filename can include 1-8
alpha, numeric and/or some special characters. The filename should
tell something about the file.

filetype: Extension to afilename. A filetype is optional, can
contain from O to 3 alpha, numeric and/or some special characters.
The filetype must be separated from the filename by a period.
Certain programs require that files to be processed have specific
filetypes.

file access. Refers to methods of entering afile to retrieve the
information stored in the file.

file specification: Uniquefile identifier. A Digital Research

file specification includes an optional drive specification followed
by acolon, aprimary filename of 1-8 characters, and an optional
period and filetype of 0-3 characters. Some Digital Research
operating systems allow an optional semicolon and password of 1-8
characters following the filename or filetype. All aphaand

numeric characters and some special characters are allowed in
Digital Research file specifications.

fixed: Type of file organization used when datais to be accessed
randomly - not in sequential order. Refers generally to the

203
All Information Presented Here is Proprietary to Digital Research

nonvarying lengths of the records composing the file.

Appendix F Glossary

floating point: Value expressed in decimal notation that can
include exponential notation; areal number.

floppy disk: Flexible magnetic disk used to store information.
Floppy disks are manufactured in 5 1/4 and 8 inch diameters.

flowchart: Graphic diagram that uses special symbols to indicate
the input, output and flow of control of part or al of aprogram

flow of control: Order of the execution of statements within a
program.

format: System utility that writes a known pattern of information
on adisk so agiven hardware configuration can properly support
reading and writing on that disk.

formatted printing: Output specifically designed in a certain
pattern and achieved through particular coded language statements

fragmentation: Division of storage areain away that causes areas
to be wasted.

function: Subroutine to which you can pass values and which returns
avalue. Useful when the same code is required repeatedly, as the
program can call the function at any time.

global: Relevant throughout an entire program.

hex file: ASCII-printable representation of acode or datafilein
hexadecimal notation.

hexadecimal notation: Notation for the base 16 number system using
thesymbolsO, 1, 2, 3,4,5,6,7,8,9,A,B1,C,D, Eand Fto
represent the sixteen digits. Machine code is often converted to
hexadecimal notation because it can be more easily understood.

high bound: Upper limit of one dimension of an array.

204
All Information Presented Here is Proprietary to Digital Research

high level language: Set of special words and punctuation that
allows a programmer to code software without being concerned with
internal memory management.

identifier: String of characters used to name elements of a
program, such as variable names, reserved words, and user-defined
function names. Commonly used synonymously with "variable name".

include: Call an external file into the code sequence of a program
at the point where the include statement is executed.

initialize: Set adisk system or one or more variablesto initial
values.
1/0: Abbreviation for input/outpuit.

169
Appendix F Glossary

input: Data entered to an executing program, usually from an
operator typing at the terminal or by the program reading data from
adisk.

instruction: Set of characters that defines an operation.

integer: Positive or negative nonexponential whole number that does
not contain adecimal point.

inter face: Object that allows two independent systems to
communicate with each other, as an interface between the hardware
and software in a microcomputer.

intermediate code: Code generated by the syntactical and semantic
analyzer portions of acompiler.

inter preter: Computer program that translates and executes each
source language statement before translating and executing the next
one.

| SAM: Abbreviation for Indexed Sequential Access Method.

key: Particular field of arecord on which the processingis
performed.

205
All Information Presented Here is Proprietary to Digital Research

keywor d: Reserved word with special meaning for statements or
commands.

kilobyte: 1024 * bytes denoted as 1K. 32 kilobytes equal 32K. 1024
kilobtyes equal one megabyte, or over one million bytes.

linker: System software module that connects previously assembled
or compiled programs or program modules into a unit that can be
loaded into memory and executed.

linked list: Data structure in which each element contains a
pointer to its predecessor or successor (singly linked list) or both
(double linked list) .

list device: Device such as a printer onto which data can be listed
or printed.

listing: Output file created by the compiler that lists the
statements in the source program, the line numbersit has assigned
to them, and possibly other optional information.

literal data: Verbatim trandation of charactersin the code, such
asin screen prompts, report titles and column headings.
load: To move code from storage into memory for execution.

local variable: Relevant only within a specific portion of a
program, such as within a function.
logged-in: Made known to the operating system, in reference to

drives. A driveislogged-in when it is selected by the user or an
executing process.

logical: Representation of something such as a console, memory or
disk drive that might or might not be the same in its actual

physical form. For example, a hard disk can occupy one physical
drive, and yet you can divide the available storage on it to appear
to the user as if there were several different drives. These

apparent drives are the logical drives.

logical device: Reference to an 1/0 device by the name or number
assigned to the physical device.

206
All Information Presented Here is Proprietary to Digital Research

logical operator: NOT, AND, OR, and XOR.
lower bound: Lower limit of one dimension of an array.

machine code: Output of an assembler or compiler to be executed
directly on the target processor.

machine language: Instructions directly executable by the
processor.
memory: Storage area within and/or attached to a computer system

microprocessor: Silicon chip that is the Central Processing Unit
(CPU) of the microcomputer system.

mixed mode: Combination of integer and real or numeric and string
valuesin an expression. Mixed string and numeric operations are
generally not allowed in high level languages.

mnemonic operator: Alphabetical symbol for agebraic operator: LT,
LE, GT, GE, NE, and EQ.

module: Section of software having well-defined input and output
that can be tested independently of other software.

multiple line function: Function composed of a function definition
statement and one or more additional statements,

numeric constant: Real or integer quantity that does not vary
within the program.

numeric variable: Real or integer identifier to which varying
numeric quantities can be assigned during program execution.

null string: A string that contains no character; essentially an
empty string.

object code: Output of an assembler or compiler that executes on
the target processor.

open: System service that informs the operating system of the
manner in which a given resource, usualy adisk file, isintended
to be used.

207
All Information Presented Here is Proprietary to Digital Research

operating system: Collection of programs that supervises the
execution of other programs and the management of computer
resources. An operating system provides an orderly input/output
environment between the computer and its peripheral devices,
enabling user programs to execute safely.

operation: Execution of a piece of code.

option: One of aset of parameters that can be part of a command or
language statement. Options are used to modify the output of an
executing process.

output: Datathat the processor sends to the console, printer,
disk, or other storage media.

parameter: Value supplied to acommand or language statement that
provides additional information for the command or statement. Used
interchangeably with "argument.” An actual parameter isavalue

that is substituted for adummy or formal argument in agiven
procedure or'function when it is invoked.

peripheral device: Devices external to the CPU. For example,
terminals, printers, and disk drives are common peripheral devices
that are not part of the processor, but are used in conjunction with
it.

pointer: Dataitem whose value is the address of alocation in
memory.

primitive: Most basic or fundamental unit of data such asasingle
digit or letter.

process: Program that is actually executing, as opposed to being in
astatic state of storage on disk.

program: Series of specially coded instructions that performs
specific tasks when executed on a computer.

prompt: Any characters displayed on the input terminal to help the
user decide what the next appropriate action is. A system prompt is
aspecia prompt displayed by the operating system, indicating to
the user that it is ready to accept input.

208
All Information Presented Here is Proprietary to Digital Research

random access. Method of entering afile at any record number, not
necessarily the first record in thefile.

random accessfile: File structure in which data can be accessed in
arandom manner, irrespective of its position in thefile.
random number: Number selected at random from a set of numbers.

real number: Numeric value specified with adecimal point; same as
"floating point notation".

record: One or more f ields usually containing associated
information in numerical or textual form. A fileis composed of one
or more records and generally stored on disk.

record number: Position of a specific record in afixed-length
file, relative to record number 1. A key by which a specific record
in afixed fileis accessed randomly.

recursive: Code that callsitself.

relational operator: Comparison operator. The following set of
operators expressed in algebraic or mnemonic symbols. LT, LE, NE,
EQ, GT, GE, EQ. A relational operator states arelationship between
two expressions.

reserved word: A keyword that has a special meaning to agiven
language or operating system.
return value: Value returned by a function.

row-major order: Order of assignment of valuesto array elementsin
which the first item of the subscript list indicates the number of
“rows’ in the array.

run a program: Start a program executing. When aprogramis
running, the microprocessor chip is executing a series of
instructions.

run-time error: Error occurring during program execution.

run-time monitor : Program that directly executes the coded
instructions generated by a compiler/interpreter.

sequential access. Type of file structure in which data can only be

209
All Information Presented Here is Proprietary to Digital Research

accessed seridly, one record at atime. Data can be added only to
the end of the file and cannot be deleted. An example of a
sequential access mediais magnetic tape.

sour ce program: Text file that is an input file for a processing
program, such as an editor, text formatter, assembler or compiler

statement: Defined way of coding an instruction or data definition
using specific keywords in a specific format.

storage: Place for keeping data temporarily in memory or
permanently on disk.

stream organization: Type of file organization used when datais to
be accessed sequentially. Can contain variable length records.

string constant: Literal data, asin a screen prompt, column
heading, or title of areport.

string variable: Identifier of type string to which varying strings
can be assigned during program execution.

subroutine: Section of code that performs a specific task, is
logically separate from the rest of the program, and can be
prewritten. A subroutine isinvoked by another statement and
returns to the place of invocation after executing. Subroutines are
useful when the same sequence of code is used more than oncein a
program.

subscript: Integer expression that specifies the position of an
element in an array.

subscript list: Numeric value appended to a variable name that
indicates the number of elementsin each dimension in the array of
that name. Each dimension must have avalue in the subscript list
indicating the number of elements for which to alocate storage
Space.

syntax: Rules for structuring statements for an operating system or
programming language.

toggle: "Switch" enabled by a special code in the command line that

210
All Information Presented Here is Proprietary to Digital Research

modifiesthe output of the executing program.

trace: Option used for run-time debugging. The trace option
generally lists each line of code as it executes to enable the
programmer to note where a problem occurs.

upwar d-compatible: Term meaning that a program created for the
previously released operating system or compiler runs under alater
release of the same software program.

user-defined function: Set of statements created and given a
function name by the user. The function performs a specific task
and is called into action by referencing the function by name.

utility: Tool. Program or module that facilitates certain

operations, such as copying, erasing and editing files, or

controlling the cursor positioning on the video screen from within a
program. Utilities are created for the convenience of programmers
and applications operators.

value: Quantity expressed by an integer or real number.

variable: Name to which the program can assign a numerical value or
string.

variable length: Usually refers to records, where each record in a
fileis not necessarily the same length as another. variable name: Same as variable.

wildcard characters. Special characters, ? and *, that can be
included in afilename and/or filetype to identify

more than one file in asingle file specification.

End of Appendix

End of Document: CB-80 L anguage Reference M anual

