

The Amstrad CPC
Firmware Guide

By Bob Taylor and Thomas Defoe, 1992

Electronic version by David Cantrell, 1994
HTML Version, 1996/97

http://www.cantrell.org.uk/david/tech/cpc/

Transferred to Acrobat PDF format
By John Kavanagh, 2002

PDF version in association with

CPC Oxygen
http://www.cpcoxygen.pro.ie

PDF Version 1.0 (2002)

The Amstrad CPC Firmware Guide 2

The Amstrad CPC Firmware Guide 3

Introduction

Fortunately, when Amstrad developed the CPC and CPC+ computers, they let the
user access many of the computer's internal routines (the firmware) and use them in
their own programs. Experienced coders will no doubt write faster or more versatile
code, yet these can easily be patched in using the Firmware Jumpblock.

For many years, Amstrad produced the definitive guide to the insides of the CPC but
sale of this was stopped in 1989. Since then the Firmware Manual has been a much
sought-after item by programmers. Nevertheless, the original guide had some
omissions, notably the abscence of information on the system variables and the Z80
microprocessor inside every CPC and CPC+.

This guide is not intended to explain how to program in machine code, but we hope
that it will supply the information needed to make the most of the Amstrad's
capabilities when writing your own programs.

Bob Taylor and Thomas Defoe, 1992

The Amstrad CPC Firmware Guide 4

The Amstrad CPC Firmware Guide 5

Contents

Use of Memory by the Operating System 7

 Overview of the CPC 7
 System Variables 8

Firmwire Guide 33

 Kernel 35
 Low Jumpblock 38
 High Jumpblock 40
 The Key Manager 43
 The Text VDU 47
 The Graphics VDU 53
 The Screen Pack 57
 Cassette / AMSDOS 63
 AMSDOS / BIOS 66
 The Sound Manager 69
 The Machine Pack 71
 664 / 6128 only 73
 The Firmware Indirections 75
 The Maths Firmware 77
 Maths Subroutines for the 464 only 80
 Maths Subroutines for the 664 and 6128 only 81

The Z80 Instruction Set 83
 The Opcodes and T States 83
 The Flag Register 83

The CRTC Registers 105

The Amstrad CPC Firmware Guide 6

The Amstrad CPC Firmware Guide 7

Use of memory by the
Operating System

The following list of memory addresses and their uses has been compiled over a number of years,
mainly from personal investigation. It does not claim to be definitive, since no accurate source seems
to be available to the average computer user, and so may be inaccurate or deficient at certain points;
also, some of the areas described have uses additional to those listed. We have tried to make it as
accurate as possible, to enable others to use to the full those facilities which present themselves via
this information.

• Addresses and values are present in memory with the low byte first. The Z80 processor
represents all 16-bit values in the order lo-byte hi-byte.

• The term `above' means higher in memory.

• Areas with numbers of bytes of either &00 or &FF given in brackets, may be safe to use for
machine code routines etc, as may the tape area, and the Sound ENT and ENT areas if these
are unused.

• The first column given is the address (for the 6128) of the memory being considered, while the
second column gives the equivalent 464 address - unfortunately the 464 differs from the 6128
for most addresses, so if one address is omitted, the system variable is not available for that
machine.

• The next column gives the size allocated in bytes. Addresses on the right hand side enclosed
in brackets are of System Variables which hold the address of the bytes being explained. With
addresses or values anywhere in the text, the value shown is for the 6128; a value in italics is
for the 464 only.

Overview of the CPC's memory

In the following tables, the following symbols are used:

<> - not the value or bit which follows
* - this applies to all machine with a disk drive fitted
b0 - bit 0
b1 - bit 1
...
b15 - bit 15
HB - most significant byte, hi-byte
LB - least significant byte, lo-byte

When addresses are given in the comments, they apply to the 6128. When the 464's address is
different, it is given in brackets, such as at the comment for &B763.

Please note that this section of the guide has been set out with all the addresses in the leftmost
column in the correct order for the 6128.

The Amstrad CPC Firmware Guide 8

The System Variables

6128 464 Size Comments on the memory locations

&0000 &0000 &40 Restart block:

&0000 &0000 RST 0: complete machine reset

&0008 &0008 RST 1: LOWJUMP: in-line two byte address: b0 to
b13=address;
b14=Low ROM disabled;
b15=Upper ROM disabled

&000B &000B LOW PCHL: HL has address as RST 1

&000E &000E `JMP BC': BC has address to jump to

&0010 &0010 RST 2: SIDE CALL: inline two byte address: b0 to
b13=address-&C000;
bl4 to b15=offset to required ROM (used between
sequenced Foreground ROMs)

&0013 &0013 SIDE PCHL: HL has address as RST 2

&0016 &0016 `JMP DE': DE has address to jump to

&0018 &0018 RST 3: FAR CALL: inline three byte address block: bytes 1
and 2 hold the address;
byte 3 holds the ROM select address

&001B &001B FAR PCHL: as RST 3, but HL has address;
C has ROM select

&001E &001E `JMP HL': HL has address to jump to

&0020 &0020 RST 4: RAM LAM: LD A,(HL) from RAM with ROMs
disabled

&0023 &0023 FAR CALL: as RST 3, but HL has address of three byte
address block

&0028 &0028 RST 5: FIRM JUMP: inline two byte address to jump to

&0030 &0030 RST 6: User restart;
default to RST 0

&0038 &0038 RST 7: Interrupt entry (KB/Time etc)

&003B &003B External interrupt (default to RET)

&0040 &0040 &130 ROM lower foreground area: BASIC input area (tokenised)

&016F &016F end of BASIC input area.

&0170 &0170 BASIC working area for program, variables, etc...

&0170 &0170 Program area;
Variables and DEF FNs area;
Arrays area;
Free space;
end of free space;
Strings area;
end of Strings area (=HIMEM);
Space for user machine code routines;
end of user space, byte before user;
defined graphics area;
User defined graphics area;
end of UDG area;
ROM Upper reserved area, expandible during;

 KL ROM WALK, including:

 r*4 ROM chaining blocks (arranged as follows):

The Amstrad CPC Firmware Guide 9

6128 464 Size Comments on the memory locations

&A6FC &A6FC 4 AMSDOS chain,ing block:

&A6FC &A6FC 2 address of next ROM block in chain (or &0000 if the last in
chain)

&A6FE &A6FE 1 ROM Select address

&A6FF &A6FF 1 &00

&A700 &A700 &500 AMSDOS reserved area. This area is moved down if any
ROMs have numbers greater than eight (6128 only)

&A700 &A700 1 Current drive number (0=A;
1=B)

&A701 &A701 1 Current USER number

&A702 &A702 1 flag?

&A703 &A703 2 address?

&A705 &A705 1 flag?

&A706 &A706 2 address?

&A708 &A708 1 OPENIN flag (&FF=closed; <>&FF=opened)

&A709 &A709 &20 Copy of current or last Disc Directory entry for
OPENIN/LOAD:

&A709 &A709 1 USER number

&A70A &A70A 8 filename (padded with spaces)

&A712 &A712 3 file extension (BAS, BIN, BAK, etc) including:

&A712 &A712 1 b7 set = Read Only

&A713 &A713 1 b7 set = System (ie not listed by CAT or DIR)

&A715 &A715 1 16K block sequence number for this directory entry (0 for
first block; if <>0 part of a larger file)

&A716 &A716 2 unused

&A718 &A718 1 length of this block in 128 byte records

&A719 &A719 16 sequence of Disc Block numbers containing file - &00 as
end marker

&A729 &A729 1 number of 128 byte records loaded so far; before loading
proper: &00 for ASCII (ie nothing loaded yet); &01 for BIN
or BAS files (ie header record loaded)

&A72A &A72A 1

&A72B &A72B 1

&A72C &A72C 1 OPENOUT flag (&FF=closed; <>&FF=opened)

&A72D &A72D &20 Copy of current or last Disc Directory entry for
OPENOUT/SAVE:

&A72D &A72D 1 USER number

&A72E &A72E 8 filename (padded with spaces)

&A736 &A736 3 file extension ($$$ while open; correct extension when
finished)

&A739 &A739 1 flag (&00=open; &FF=closed, ie finished)

&A73A &A73A 1

&A73B &A73B 1 flag (&00=open; &FF=closed)

&A73C &A73C 1 number of 128 byte records saved so far

&A73D &A73D 16 sequence of Disc Block numbers containing file - &00 as
end marker

The Amstrad CPC Firmware Guide 10

6128 464 Size Comments on the memory locations

&A74D &A74D 1 number of 128 byte records saved so far

&A74E &A74E 1

&A74F &A74F 1

&A750 &A750 1 flag (&00=OPENIN; &01=In Char; &02=In Direct (whole
file))

&A751 &A751 2 address of 2K buffer for ASCII, or of start of current/last
block if BIN or BAS file

&A753 &A753 2 address of next byte to read for ASCII, or of 2K buffer for
BAS or BIN file

&A755 &A755 &45 first &45 bytes of BAS/BIN file (extended header) or of
extended header made for ASCII file

&A755 &A755 1 USER number

&A756 &A756 8 filename (padded)

&A75E &A75E 3 extension

&A761 &A761 6 unused

&A767 &A767 1 file type (&00=BASIC; &01=protected BASIC; &02=Binary;
&16=ASCII)

&A768 &A768 2 unused

&A76A &A76A 2 address to load file into (=actual destination), or buffer for
an ASCII file

&A76C &A76C 1 unused for disc

&A76D &A76D 2 length of file in bytes (&0000 for ASCII files)

&A76F &A76F 2 execution address fora BIN file

&A770 &A770 &25 unused

&A795 &A795 3 length of actual file in bytes (as &A76D) -BAS and BIN only

&A798 &A798 2 simple checksum of first 67 bytes of header (LB first) - BAS
and BIN only

&A79A &A79A 1 flag (&00=OPENOUT; &01=Out Char; &02=Out
Direct(whole file))

&A79B &A79B 2 address of 2K block if an ASCII file, or of current/last block
saved if a BAS or BIN file

&A79D &A79D 2 address of next byte to write for ASCII files, or of 2K buffer
for BAS and BIN files

&A79F &A79F &45 first &45 bytes of BAS/BIN file (ie extended header)

&A79F &A79F 1 USER number

&A7A0 &A7A0 8 filename (padded)

&A7A8 &A7A8 3 extension

&A7AB &A7AB 1 flag (&00=Open)

&A7AC &A7AC 1

&A7AD &A7AD 1 flag (&00=Open)

&A7AE &A7AE 3 unused

&A7B1 &A7Bl 1 file type (&00=BASIC; &01=protected BASIC; &02=Binary;
&16=ASCII)

&A7B2 &A7B2 2 unused

&A7B4 &A7B4 2 address to save file from (for BAS or BIN files), or of buffer
for ASCII files

The Amstrad CPC Firmware Guide 11

6128 464 Size Comments on the memory locations

&A7B6 &A7B6 1 unused for disc

&A7B7 &A7B7 2 length of file in bytes

&A7B9 &A7B9 2 execution address for BIN files

&A7BB &A7BB &25 unused

&A7DF &A7DF 3 length of actual file in bytes (as at &A7B7) - BAS and BIN
only

&A7E2 &A7E2 2 simple checksum of first 67 bytes of header (LB first) - BAS
and BIN only

&A7E4 &A7E4 &80 buffer area for records sent to or loaded from Disc, or used
in forming filename and extension

&A864 &A864 14*3 Tape Jumpblock is stored here by AMSDOS - is moved to
&BC77 etc after |TAPE

&A88B &A88B 3 far address used by AMSDOS RST 3s at &BC77 etc
(&CD30,&07)

&A890 &A890 &19 Drive A Extended Disc Parameter Block (XDPB):

&A890 &A890 2 number of 128 byte records per track

&A892 &A892 1 log2(Block size)-7 (&03=1024 bytes; &04=2048 bytes)

&A893 &A893 1 (Block size)/128-1 (&07=1024 bytes;

&A894 &A894 1 (Block size)/1024 (if total of blocks <256, else /2048)-1

&A895 &A895 2 number of blocks per disc side (excluding reserved tracks)

&A897 &A897 2 number of (directory entries)-1

&A899 &A899 2 bit signiflcant value of number of blocks for directory
(&0080=1; &00C0=2)

&A89B &A89B 2 number of bits in checksum =((&A894)+ 1)/4

&A89D &A89D 2 number of reserved tracks (&00=Data; &01=IBM;
&02=System)

&A89F &A89F 1 number of first sector (&01=IBM; &41=System; &C1=Data)

&A8A0 &A8A0 1 number of sectors per track (Data=9; System=9; IBM=8)

&A8A1 &A8Al 1 gap length (Read/Write)

&A8A2 &A8A2 1 gap length (Format)

&A8A3 &A8A3 1 format filler byte (&E5)

&A8A4 &A8A4 1 log2(sector size)-7 (&02=512; &03=1024)

&A8A5 &A8A5 1 records per sector

&A8A6 &A8A6 1 current track (not for use)

&A8A7 &A8A7 1 0=not aligned (not for use)

&A8A8 &A8A8 1 Auto select flag (&00=Auto select; &FF= don't alter)

&A8A9 &A8A9

&A8B9 &A8B9

&A8D0 &A8D0 &19 Drive B Extended Disc Parameter Block (arranged as at
&A890)

&A8E9 &A8E9 (&17 bytes of &FF)

&A8F9 &A8F9

&A900 &A900 (&12 bytes of &00)

&A910 &A910

&A918 &A918 2 address of area for reading directory entries for Drive A

The Amstrad CPC Firmware Guide 12

6128 464 Size Comments on the memory locations

&A91A &A91A 2 address of Drive A XDPB

&A91C &A91C 2 address of the byte after the end of Drive A XDPB

&A91E &A91E 2

&A920 &A920 (8bytes of &00)

&A928 &A928 2 address of area for reading directory entries for Drive B

&A92A &A92A 2 address of Drive B XDPB

&A92C &A92C 2 address of the byte after the end of Drive B XDPB

&A92E &A92E 2

&A930 &A930 &80 block of directory entries, including last file loaded

&A9B0 &A9B0 &200 buffer for loading; usually contains last sector loaded

&ABB0 &ABB0 (&50 bytes of &00)

&AC00 &AC00 Start of BASIC Operating System reserved area:

&AC00 &AC00 1 program line redundant spaces flag (0=keep extra spaces;
<>0=remove)

 &AC01 9*3 groups of 3 RET bytes (&C9) called by the Upper ROM

&AC01 &AC1C 1 AUTO flag (0=off; <>0=on)

&AC02 &AC1D 2 number of the next line (6128) or of the current line (464)
for AUTO

&AC04 &AC1F 2 step distance for AUTO

&AC06 &AC21 1

&AC07 &AC22 1

&AC08 1

 &AC23 1

&AC09 &AC24 1 WIDTH (&84=132)

&AC0A &AC25

&AC0B

&AC0C &AC26 1 FOR/NEXT flag (0=NEXT not yet used; <>0=used)

&ACOD &AC27 5 FOR start value (real). Only 2 bytes are used if % or
DEFINT variable

&AC12 &AC2C 2 address of `: ' or of the end of program line byte after a
NEXT command

&AC14 &AC2E 2 address of LB of the line number containing WEND

&AC16 &AC30 1 WHILE/WEND flag (&41=WEND not yet used; &04=used)

&AC17 &AC31

&AC18 &AC32 2

&AClA &AC34 2

&AC1C &AC36 2 address of location holding ROM routine address for KB
event block

&AC1E &AC38 &0C Event Block for ON SQ(l):

&AC1E &AC38 2 chain address to next event block; &0000 if last in chain,
but &FFFF if unused

&AC20 &AC3A 1 count

&AC21 &AC3B 1 class: Far address, highest (ON SQ) priority, Normal &
Synchronous event

The Amstrad CPC Firmware Guide 13

6128 464 Size Comments on the memory locations

&AC22 &AC3C 2 routine address (in BASIC ROM)

&AC24 &AC3E 1 ROM Select number (&FD ie ROM 0 enabled, Lower ROM
disabled)

&AC25 &AC3F 1 (first byte of user field)

&AC26 &AC40 2 address of the end of program line byte or `:' after `ON
SQ(x) GOSUB line number' statement

&AC28 &AC42 2 address of the end of program line byte of the line before
the GOSUB routine

&AC2A &AC44 &0C Event block for ON SQ(2), arranged as &AC1E onwards -
second ON SQ priority

&AC36 &AC50 &0C Event block for ON SQ(4), arranged as &AC1E onwards -
lowest ON SQ priority

&AC42 &AC5C &12 Ticker and Event Block for AFTER/EVERY Timer 0

&AC42 &AC5C 2 chain address to next event block (usually to another timer
or &00FF)

&AC44 &AC5E 2 `count down' count

&AC46 &AC60 2 recharge count (for EVERY only - &0000 if AFTER)

&AC48 &AC62 2 chain address to next ticker block

&AC4A &AC64 1 count

&AC4B &AC65 1 class: Far address, lowest (timer) priority, Normal and
Synchronous event

&AC4C &AC66 2 Routine address (in BASIC ROM)

&AC4E &AC68 1 ROM Select No (&FD ie ROM 0 enabled, Lower ROM
disabled)

&AC4F &AC69 1 (first byte of user field)

&AC50 &AC6A 2 address of the end of program line byte or `:' after
statement in use when the timer `timed-out'

&AC52 &AC6C 2 address of tbe end of program line byte of tbe line before
the GOSUB routine

&AC54 &AC6E &12 Ticker and Event Block for AFTER/EVERY Timer 1 (3rd
Timer priority) arranged as at &AC42

&AC66 &AC80 &12 Ticker and Event Block for AFTER/EVERY Timer 2 (2nd
Timer priority) arranged as at &AC42

&AC78 &AC92 &12 Ticker and Event Block for AFTER/EVERY Timer 3
(highest priority) arranged as at &AC42

&AC8A &ACA4 &100 BASIC input area for lines (as typed in and not tokenised)
or for INPUT

&AD8C &ADA6 2 address of line number LB in line containing error

&AD8E &ADA8 2 address of byte before statement containing error - ie of `:'
or of HB of Line No

&AD90 &ADAA 1 ERR (Error No)

&AD91 1 DERR (Disc Error No)

&AD92 &ADAB 2 as &AD8E if error is in a program (ie not if in Direct
Command Mode)

&AD94 &ADAD 2 as &AD8C if error is in a program (ie not if in Direct
Command Mode)

&AD96 &ADAF 2 address of the length LB of line specified by the `ON
ERROR GOTO' command

&AD98 &ADB1 1

The Amstrad CPC Firmware Guide 14

6128 464 Size Comments on the memory locations

&AD99 &ADB2 &09 Current SOUND parameter block (see Firmware Jump
&BCAA)

&AD99 &ADB2 1 channel andrendezvous status

&AD9A &ADB3 1 amplitude envelope (ENV) number

&AD9B &ADB4 1 tone envelope (ENT) number

&AD9C &ADB5 2 tone period

&AD9E &ADB7 1 noise period

&AD9F &ADB8 1 initial amplitude

&ADA0 &ADB9 2 duration, or envelope repeat count

&ADA2 &ADBB &10 Current Amplitude or Tone Envelope parameter bloc (see
&BCBC or &BCBF)

&ADA2 &ADBB 1 number of sections (+&80 for a negative ENT number, ie
the envelope is run until end of sound

&ADA3 &ADBC 3 first section of the envelope:

&ADA3 &ADBC 1 step count (if <&80) otherwise envelope shape (not tone
envelope)

&ADA4 &ADBD 1 step size (if step count<&80) otherwise envelope period
(not tone envelope)

&ADA5 &ADBE 1 pause time (if step count<&80) otherwise envelope period
(not tone envelope)

&ADA6 &ADBF 3 second section of the envelope, as &ADA3

&ADA9 &ADC2 3 third section of the envelope, as &ADA3

&ADAC &ADC5 3 fourth section of the envelope, as &ADA3

&ADAF &ADC8 3 fifth section of the envelope, as &ADA3

&ADB2 &ADCB 5

&ADB7 &ADD0 &36

&ADEB &AE04 2

&ADED &AE06 6

&ADF3 &AE0C 26*1 table of DEFINT (&02), DEFSTR (&03) or DEFREAL
default (&05), for variables `a' to `z'

&AE0D &AE26

&AE0E &AE27 2

&AE10 &AE29 2

&AE12 &AE2B 2

&AE14 &AE2D 1

&AE15 &AE2E 2 address of line number LB of last BASIC line (or &FFFF)

&AE17 &AE30 2 address of byte before next DATA item (eg comma or
space)

&AE19 &AE32 2 address of next space on GOSUB etc stack, (see also
&B06F)

&AE1B &AE34 2 address of byte before current statement (&003F if in
Direct Command mode)

&AE1D &AE36 2 address of line number LB of line of current statement
(&0000 if in Direct Command mode)

&AE1F &AE38 1 trace flag (0=TROFF; <>0=TRON)

The Amstrad CPC Firmware Guide 15

6128 464 Size Comments on the memory locations

&AE20 &AE39 1 flag used with Trace (&00 if in Direct Command mode; &01
if in a program)

&AE21 &AE3A

&AE22 &AE3B 2

&AE24 &AE3D 2

&AE26 &AE3F 2 address to load cassette file to

&AE28 &AE41

&AE29 &AE42 1 file type from cassette header

&AE2A &AE43 2 file length from cassette header

&AE2C &AE45 1 program protection flag (<>0 hides program as if protected)

&AE2D &AE46 17 buffer used to form binary or hexadecimal numbers before
printing etc

&AE3A &AE53 5 start of buffer used to form hexadecimal numbers before
printing etc

&AE3A &AE53 1 Key Number used with INKEY (providing the Key Number
is written as a decimal)

&AE3E &AE57 1 last byte (usually &00 or &20) of the formed binary or
hexadecimal number

&AE43 &AE5D 13 buffer used to form decimal numbers before printing etc

&AE4E &AE68 1 last byte (usually &00 or &20) of the formed decimal
number

 &AE6B 3

&AE51 1

&AE52 &AE6E 2

&AE54 1

 &AE70 2 temporary store for address after using (&AE68)

&AE55 &AE72 2 address of last used ROM or RSX JUMP instruction in its
Jump Block

&AE57 &AE74 1 ROM Select number if address above is in ROM

&AE58 &AE75 2 BASIC Parser position, moved on to `: `, or the end of
program line byte after a CALL or an RSX

&AE5A &AE77 2 the resetting address for machine Stack Pointer after a
CALL or an RSX

&AE5C &AE79 2 ZONE value

&AE5D 1

 &AE7A 1

&AE5E &AE7B 2 HIMEM (set by MEMORY)

 &AE7D 2 address of the byte before the UDG area (the end of the
user M/C routine area or the Strings area) if the UDG area
is still present, otherwise the highest byte of Program etc
area

&AE60 2 address of highest byte of free RAM (ie last byte of UDG
area)

&AE62 &AE7F 2 address of start of ROM lower reserved area (used for
tokenised lines)

&AE64 &AE81 2 address of end of ROM lower reserved area (byte before
Program area)

&AE66 &AE83 2 as &AE68

The Amstrad CPC Firmware Guide 16

6128 464 Size Comments on the memory locations

&AE68 &AE85 2 address of start of Variables and DEF FNs area

&AE6A &AE87 2 address of start of Arrays area (where next Variable or
DEF FN entry is placed)

&AE6C &AE89 2 address of start of free space (where next Array entry is
placed)

&AE6E 1

&AE70 &AE8C &1FF GOSUB, FOR and WHILE stack. Entries are added above
any existing ones in use (mixed as encountered) at
address given by &B06F and must be used up in the
opposite order. Completed entries are not deleted, just
overwitten by the next new entry:

 1 (byte of &00)

 2 address of end of program line byte or `:' after GOSUB
statement (the point to RETURN to)

 2 address of line number HB of line containing GOSUB

 1 byte of &06, ie the length of the GOSUB entry

 2 address of current value of control variable (in Variables
area)

 5 value of limit (ie the TO value) - there are two bytes only for
Integer FORs

 5 value of STEP - two bytes for Integer FORs

 1 sign byte (&00 for positive; &01 for negative)

 2 address of the end of program line byte, or `:' after the FOR
statement (ie the address for the NEXT loop to restart at)

 2 address of line number LB of line containing FOR

 2 address of byte after NEXT statement (ie the address to
continue at when the limit is exceeded)

 2 address of byte after NEXT statement again

 1 length byte (&16 for Real FORs; &10 for Integer FORs)

WHILE
(66 max
capacity):

 2 address of line number LB of line containing WHILE

 2 address of the end of program line byte or `:' after WEND
statement (ie the address to continue at when the condition
is false)

 2 address of condition after the WHILE command

 1 length byte of &07 - end of WHILE entry proper but:

 +5 value of condition (0 or -1 as a floating point value) only
while the WHILE entry is the last on the stack

&B06F &B08B 2 address of the next space on the GOSUB etc stack (see
also &AE19)
NB: The free space on the stack is also used as a
workspace by various routines for values and addresses
and for Variable names

&B071 &B08D 2 address of end of free space (the byte before the Strings
area)

&B073 &B08F 2 address of end of Strings area (=HIMEM)

&B075 1

 &B091 1

The Amstrad CPC Firmware Guide 17

6128 464 Size Comments on the memory locations

 &B092 2

&B076 &B094 2

&B078 &B096 2 address of the highest byte of free RAM disregarding
UDGs (usually &A6FB)

&B07A &B098 2

&B07C &B09A 2 address for the next entry in the String Concatenation area

&B07E &B09C 10*3 concatenation area holding descriptors of strings being
used

&B09C &B0BA 1 length of last String used

&B09D &B0BB 2 address of last String used

 &B0BD 2

 &BOBF 2

&B09F &BOC1 1 type byte used with the Virtual Accumulator (&02=Integer;
&03=String; &05=Real)

&B0A0 &B0C2 5 Virtual Accumulator used by the maths routines (two bytes
for an Integer value; three bytes for a String Descriptor; five
bytes for a Real value)

&B0A0 &B0C2 2

&B0A2 &B0C4 1

&B0A3 &B0C5 2

&B0A5 &B0C7 &5B (&39 bytes on 464) bytes of &FF

&B100 &B8E4 2 &07, &C6

&B102 &B8E6 2 &65, &89

&B104 &B8E8 5

&B109 &B8ED 5

&B10E &B8F2 5

&B113 &B8F7 1 DEG/RAD flag (&00=RAD; &FF=DEG)

&B114 &B8DC 1

&B115 &B8DD 1

&B116 &B8DE 1

&B117 &B8DF 1

&B118 &B800 &D2 Area used for Cassette handling:

&B118 &B800 1 cassette handling messages flag (0=enabled;
<>O=disabled)

&B119 &B801 1

&B11A &B802 1 file IN flag (&00=closed; &02=IN file; &03=opened; &05=IN
char)

&B11B &B803 2 address of 2K buffer for directories

&B11D &B805 2 address of 2K buffer for loading blocks of files - often as
&B11B

&B11F &B807 &40 IN Channel header

&B11F &B807 &10 filename (padded with NULs)

&B12F &B817 1 number of block being loaded, or next to be loaded

&B130 &B818 1 last block flag (&FF=last block; &00=not)

The Amstrad CPC Firmware Guide 18

6128 464 Size Comments on the memory locations

&B131 &B819 1 file type (&00=BASIC; &01=Protected BASIC; &02=Binary;
&08=Screen; &16=ASCII)

&B132 &B81A 2 length of this block

&B134 &B81C 2 address to load this or the next block at,or the address of
the byte after last one loaded

&B136 &B81E 1 first block flag (&FF=first block; &00=not)

&B137 &B81F 2 total length of file (all blocks)

&B139 &B821 2 execution address for BIN files (&0000 if not saved as
such)

&B13B &B823 &24 not allocated

&B15F &B847 1 file OUT flag (&00=closed; &02=IN file; &03=opened;
&05=IN char)

&B160 &B848 2 address to start the next block save from, or the address of
the buffer if it is OPENOUT

&B162 &B84A 2 address of start of the last block saved, or the address of
the buffer if it is OPENOUT

&B164 &B84C &40 OUT Channel Header (details as IN Channel Header):

&B164 &B84C &10 filename

&B174 &B85C 1 number of the block being saved, or next to be saved

&B175 &B85D 1 last block flag (&FF=last block; &00=not)

&B176 &B85E 1 file type (as at &B131

&B177 &B85F 2 length saved so far

&B179 &B861 2 address of start of area to save, or address of buffer if it is
an OPENOUT instruction

&B17B &B863 1 first block flag (&FF=first block; &00=not)

&B17C &B864 2 total length of file to be saved

&B17E &B866 2 execution address for BIN files (&0000 if parameter not
supplied)

&B180 &B868 &24 not allocated

&B1A4 &B88C &40 used to construct IN Channel header:

&B1B5 &B89D 1

&B1B7 &B89F 2

&B1B8 &B8A3 1

&B1BE &B8A6 1

&B1B9 &B51D base address for calculating relevant Sound Channel block

&B1BC &B520 base address for calculating relevant Sound Channel ?

&B1BE &B522 base address for calculating relevant Sound Channel ?

&B1D5 &B539 base address for calculating relevant Sound Channel ?

&B1E4 &B8CC 1

&B1E5 &B8CD 1 synchronisation byte

&B1E6 &B8CE 2 &55, &62

&B1E8 &B8D0 1

&B1E9 &B8D1 1 cassette precompensation (default &06; SPEED WRITE 1
&0C @4microseconds)

&B1EA &B8D2 1 cassette `Half a Zero' duration (default &53; SPEED
WRITE 1 &29 @ 4microseconds)

The Amstrad CPC Firmware Guide 19

6128 464 Size Comments on the memory locations

&B1EB &B8D3 2

 &B550 1 used by sound routines

 &B551 1 used by sound routines

&B1ED 1 used by sound routines

&B1EE &B552 1 used by sound routines

&B1F0 &BB54 1 used by sound routines

 &BB55 7 used by sound and cassette routines

&B1F8 &B55C &3F Sound Channel A (1) data:

&B212 &B576 1 number of sounds still queuing

&B213 &B577 1 number of sounds originally queuing

&B217 &B57B 8 first or fifth sound in Channel 1 (A) queue:

&B217 &B57B 1 status: b0 to b2 = rendezvous with channel 1, 2 or 4; b3 =
Hold; b4 = Flush

&B218 &B57C 1 b0 to b3 = tone envelope number; b4 to b7 = volume
envelope number (ie ENV number*16)

&B219 &B57D 2 pitch

&B21B &B57F 1 noise

&B21C &B580 1 volume

&B21D &B581 2 duration (in 0.01 seconds)

&B21F &B583 8 second sound in Channel 1 queue (as &B217)

&B227 &B58B 8 third sound in Channel 1 queue (as &B217)

&B22F &B593 8 fourth sound in Channel 1 queue (as &B217)

&B237 &B59B &3F Sound Channel B (2) data - as described at &B1F8

&B256 &B5BA 8 first or fifth sound in Channel 2 queue (as &B217)

&B25E &B5C2 8 second sound in Channel 2 queue (as &B217)

&B266 &B5CA 8 third sound in Channel 2 queue (as &B217)

&B26E &B5D2 8 fourth sound in Channel 2 queue (as &B217)

&B276 &B5DA &3F Sound Channel C (4) data - as described at &B1F8

&B295 &B5F9 8 first or fifth sound in Channel 4 queue (as &B217)

&B29D &B601 8 2nd sound in Channel 4 queue (as &B217)

&B2A5 &B609 8 3rd sound in Channel 4 queue (as &B217)

&B2AD &B611 8 4th sound in Channel 4 queue (as &B217)

&B2A6 &B60A base address for calculating relevant ENV parameter block

&B2B6 &B61A 15*16 ENV parameter block area (each arranged as &ADA2):

&B2B6 &B61A &10 ENV 1

&B2C6 &B62A &10 ENV 2

&B2D6 &B63A &10 ENV 3

&B2E6 &B64A &10 ENV 4

&B2F6 &B65A &10 ENV 5

&B306 &B66A &10 ENV 6

&B316 &B67A &10 ENV 7

&B326 &B68A &10 ENV 8

The Amstrad CPC Firmware Guide 20

6128 464 Size Comments on the memory locations

&B336 &B69A &10 ENV 9

&B346 &B6AA &10 ENV 10

&B356 &B6BA &10 ENV 11

&B366 &B6CA &10 ENV 12

&B376 &B6DA &10 ENV 13

&B386 &B6EA &10 ENV 14

&B396 &B6FA &10 ENV 15

&B396 &B6FA base address for calculating relevant ENT parameter block

&B3A6 &B70A 15*16 ENT parameter block area (each arranged as &ADA2):

&B3A6 &B70A &10 ENT 1

&B3B6 &B71A &10 ENT 2

&B3C6 &B72A &10 ENT 3

&B3D6 &B73A &10 ENT 4

&B3E6 &B74A &10 ENT 5

&B3F6 &B75A &10 ENT 6

&B406 &B76A &10 ENT 7

&B416 &B77A &10 ENT 8

&B426 &B78A &10 ENT 9

&B436 &B79A &10 ENT 10

&B446 &B7AA &10 ENT 11

&B456 &B7BA &10 ENT 12

&B466 &B7CA &10 ENT 13

&B476 &B7DA &10 ENT 14

&B486 &B7EA &10 ENT 15

&B496 &B34C &50 Normal Key Table:
Cur U Cur R Cur D f9 f6 f3 Enter f.
Cur L Copy f7 f8 f5 f1 f2 f0
Clr [Ret] f4 \
^ - @ p ; : / .
0 9 o i l k m j
8 7 u y h j n Space
6 5 r t g f b v
4 3 e w s d c x
1 2 Esc q Tab a Caps z
[VT] [LF] [BS] [TAB] Fire2 Fire1 Del

&B4E6 &B39C &50 Shifted Key Table:
Cur U Cur R Cur D f9 f6 f3 Enter f.
Cur L Copy f7 f8 f5 f1 f2 f0
Clr { Ret } f4 `
£ = | P + * ? >
_) O I L K M <
(' U Y H J N Space
& % R T G F B V
$ # E W S D C X

The Amstrad CPC Firmware Guide 21

6128 464 Size Comments on the memory locations

 ! " Esc Q -> A Caps Z
 [VT] [LF] [BS] [TAB] Fire2 Fire1 Del

&B536 &B3EC &50 Control Key Table:
Cur
U Cur R Cur D f9 f6 f3 Enter f.

Cur
L Copy f7 f8 f5 f1 f2 f0

Clr (ESC) Ret (GS) f4 (FS)
(RS) (NUL) (DLE)
(US) (SI) (HT) (FF) (VT) (CR)
 (NAK) (EM) (BS) (LF) (SO)
 (DC2) (DC4) (BEL) (ACK) (STX) (SYN)
 (ENQ) (ETB) (DC3) (EOT) (ETX) (CAN)
 ~ Esc (DC1) Ins/Ovrt (SOH) S-lck (SUB)
 Del

&B586 &B43C 10 KB repeats table (each byte/bit applies to all three key
tables): 1 byte is used per line of the tables; b0 to b7 give
the columns (left to right), repeat if set

&B590 &B446 &98 DEF KEY's definition area (for Keys &80 to &9F in
sequence): each definition has either a single byte of &00 if
it is unused/unaltered, or: byte 1: length of definition bytes
2 to x: definition, either a single key or a string of keys

&B628 &B4DE 1 Byte after end of DEF KEY area

&B629 &B4DF 1

&B62A &B4E0 1

&B62B &B4E1 2 address of DEF KEY area

&B62D &B4E3 2 address of byte after end of DEF KEY area

&B62F &B4E5 1

&B630 &B4E6 1

&B631 &B4E7 1 Shift lock flag (&00=off; &FF=on)

&B632 &B4E8 1 Caps lock flag (&00=off; &FF=on)

&B633 &B4E9 1 KB repeat period (SPEED KEY - default &02 @ 0.02
seconds)

&B634 &B4EA 1 KB delay period (SPEED KEY - default &1E @ 0.02
seconds)

&B635 &B4EB 2*10 Tables used for key scanning; bits 0 to 7 give the table
columns (from left to right):

&B635 &B4EB 1 Cur U Cur R Cur D f9 f6 f3 Enter f.
&B636 &B4EC 1 Cur L Copy f7 f8 f5 f1 f2 f0
&B637 &B4ED 1 Clr [Ret] f4 Shift \ Ctrl
&B638 &B4EE 1 ^ - @ p ; : / .
&B639 &B4EF 1 0 9 o i l k m j
&B63A &B4F0 1 8 7 u y h j n Space

The Amstrad CPC Firmware Guide 22

6128 464 Size Comments on the memory locations

&B63B &B4F1 1 Down Up Left Right Fire2 Fire1 (Joystick 1)
6 5 r t g f b v

&B63C &B4F2 1 4 3 e w s d c x
&B63D &B4F3 1 1 2 Esc q Tab a Caps z
&B63E &B4F4 1 Down Up Left Right Fire2 Fire1 (Joystick 2)

 Del
&B63F &B4F5 1 complement of &B635

&B640 &B4F6 1 complement of &B636

&B641 &B4F7 1 complement of &B637

&B642 &B4F8 1 complement of &B638

&B643 &B4F9 1 complement of &B639

&B644 &B4FA 1 complement of &B63A

&B645 &B4FB 1 complement of &B63B

&B646 &B4FC 1 complement of &B63C

&B647 &B4FD 1 complement of &B63D

&B648 &B4FE 1 complement of &B63E

&B64B &B501

&B653 &B509 1

&B654 &B5OA 1

&B655 &B50B 1

&B656 &B50C 1

&B657 &B50D 7 event block for Keyboard handling, comprises:

&B657 &B50D 2 chain address

&B659 &B50F 1 count

&B65A &B510 1 class: express event

&B65B &B511 2 ROM routine address: &C492

&B65D &B513 1 ROM select number: &FD

&B65E &B514 20*2 store for last keys pressed and each entry is as follows:
byte 1: +0 to +10=key tables' line number; if bit 5 is set
then Shift is pressed; bit 7=Control is pressed byte 2: b0 to
b7=key tables' column number - see &B496 etc

&B67F &B67F 2 vestige from the 464?

&B686 &B53C 1

&B687 &B53D 1 accumulated count of the number of keys pressed (MOD
20)

&B688 &B53E 1 number of keys left in key buffer

&B689 &B53F 1 accumulated count of the number of keys removed from
the buffer (MOD 20)

&B68A &B540 1

&B68B &B541 2 address of the normal key table

&B68D &B543 2 address of the shifted key table

&B68F &B545 2 address of the control key table

The Amstrad CPC Firmware Guide 23

6128 464 Size Comments on the memory locations

&B691 &B547 2 address of the KB repeats table

&B692 1

&B693 &B328 2 ORIGIN x

&B695 &B32A 2 ORIGIN y

&B697 &B32C 2 graphics text x position (pixel)

&B699 &B32E 2 graphics text y position(pixel)

&B69B &B330 2 graphics window x of one edge (pixel)

&B69D &B332 2 graphics window x of other edge (pixel)

&B69F &B334 2 graphics window y of one side (pixel)

&B6A1 &B336 2 graphics window y of other side (pixel)

&B6A3 &B338 1 GRAPHICS PEN

&B6A4 &B339 1 GRAPHICS PAPER

&B6A5 &B33A 8/14 (This area is 14 bytes on the 464) Used by line drawing
(and other) routines, as follows:

&B6A7 &B33A 2 x+1()

&B6A9 &B33C 2 y/2+1()

&B6AB &B33E 2 y/2-x()

&B6AD &B340 2

 &B342 2

&B6AF &B344 1

&B6B0 &B345 1

&B6B1 &B346 1

&B6B2 1 first point on drawn line flag (<>0=to be plotted; 0=don't
plot)

&B6B3 1 line MASK

&B6B4 1

 &B207 2

&B6B5 &B20C 1 current stream number

&B6B6 &B20D 14/15 (These areas are 15 bytes on the 464) Stream (window) 0
parameter block. These areas are arranged as &B726

&B6C4 &B21C 14/15 stream (window) 1 parameter block

&B6D2 &B22B 14/15 stream (window) 2 parameter block

&B6E0 &B23A 14/15 stream (window) 3 parameter block

&B6EE &B249 14/15 stream (window) 4 parameter block

&B6FC &B258 14/15 stream (window) 5 parameter block

&B70A &B267 14/15 stream (window) 6 parameter block

&B718 &B276 14/15 stream (window) 7 parameter block

&B726 &B285 14/15 Current Stream (Window) parameter block:

&B726 &B285 1 cursor y position (line) with respect to the whole screen
(starting from 0)

&B727 &B286 1 cursor x position (column) with respect to the whole screen
(starting from 0)

&B728 &B287

The Amstrad CPC Firmware Guide 24

6128 464 Size Comments on the memory locations

&B729 &B288 1 window top line (y) with respect to the whole screen
(starting from 0)

&B72A &B289 1 window left column (x) with respect to the whole screen
(starting from 0)

&B72B &B28A 1 window bottom line (y) with respect to the whole screen
(starting from 0)

&B72C &B28B 1 window right colwnn (x) with respect to the whole screen
(starting from 0)

&B72D &B28C 1 scroll count

&B72E &B28D 1 cursor flag (&01=disable; &02=off; &FD=on; &FE=enable)

 &B28E 1

&B72F &B28F 1 current PEN number (encoded, not its INK number)

&B730 &B290 1 current PAPER number (encoded, not its INK number)

&B731 &B291 2 address of text background routine: opaque=&1392;
transparent=&13A0

&B733 &B293 1 graphics character writing flag (0=off; <>0=on)

&B734 &B294 1 ASCII number of the first character in User Defined
Graphic (UDG) matrix table

&B735 &B295 1 UDG matrix table flag (&00=non-existent; &FF=present)

&B736 &B296 2 address of UDG matrix table

&B738 &B298 2

&B758 &B2B8 1

&B759 &B2B9 1

&B763 &B2C3 32*3 Control Code handling routine table - each code's entry
comprises: byte 1: +0 to +9=number of parameters;
+&80=re-run routine at a System Reset bytes 2 and 3:
address of the control code's handling routine

&B763 &B2C3 3 ASC 0: &80,&1513: NUL

&B766 &B2C6 3 ASC 1: &81,&1335: Print control code chararacter [,char]

&B769 &B2C9 3 ASC 2: &80,&1297: Disable cursor

&B76C &B2CC 3 ASC 3: &80,&1286: Enable cursor

&B76F &B2CF 3 ASC 4: &81,&0AE9: Set mode [,mode]

&B772 &B2D2 3 ASC 5: &81,&1940: Print character using graphics mode
[,char]

&B775 &B2D5 3 ASC 6: &00,&1459: Enable VDU

&B778 &B2D8 3 ASC 7: &80,&14E1: Beep

&B77B &B2DB 3 ASC 8: &80,&1519: Back-space

&B77E &B2DE 3 ASC 9: &80,&151E: Step-right

&B781 &B2E1 3 ASC 10: &80,&1523: Linefeed

&B784 &B2E4 3 ASC 11: &80,&1528: Previous line

&B787 &B2E7 3 ASC 12: &80,&154F: Clear window and locate the cursor
at position 1,1

&B78A &B2EA 3 ASC 13: &80,&153F: RETURN

&B78D &B2ED 3 ASC 14: &81,&12AB: Set paper [,pen]

&B790 &B2F0 3 ASC 15: &81,&12A6: Set pen [,pen]

The Amstrad CPC Firmware Guide 25

6128 464 Size Comments on the memory locations

&B793 &B2F3 3 ASC 16: &80,&155E: Delete the character at the cursor
position

&B796 &B2F6 3 ASC 17: &80,&1599: Clear the line up to the current cursor
position

&B799 &B2F9 3 ASC 18: &80,&158F: Clear from the cursor position to the
end of the line

&B79C &B2FC 3 ASC 19: &80,&1578: Clear from start of the window to the
cursor position

&B79F &B2FF 3 ASC 20: &80,&1565: Clear from the cursor position to the
end of a window

&B7A2 &B302 3 ASC 21: &80,&1452: Disable VDU

&B7A5 &B305 3 ASC 22: &81,&14EC: Set text write mode [,mode]

&B7A8 &B308 3 ASC 23: &81,&0C55: Set graphics draw mode [,mode]

&B7AB &B30B 3 ASC 24: &80,&12C6: Exchange pen and paper

&B7AE &B30E 3 ASC 25: &89,&150D: Define user defined character
[,char,8 rows of char]

&B7B1 &B311 3 ASC 26: &84,&1501: Define window [,left,right,top,bottom]

&B7B4 &B314 3 ASC 27: &00,&14EB: ESC (=user)

&B7B7 &B317 3 ASC 28: &83,&14F1: Set the pen inks [,pen,ink 1,ink 2]

&B7BA &B31A 3 ASC 29: &82,&14FA: Set border colours [,ink,ink2]

&B7BD &B31D 3 ASC 30: &80,&1539: Locate the text cursor at position 1,1

&B7C0 &B320 3 ASC 31: &82,&1547: Locate the text cursor at
[,column,line]

&B7C3 &B1C8 1 MODE number

&B7C4 &B1C9 2 screen offset

&B7C6 &B1CB 1 screen base HB (LB taken as &00)

&B7C7 &B1CC 3 graphics VDU write mode indirection - JP &0C74

 &B1CF 8 list of bytes having only one bit set, from b7 down to b0

&B7D2 &B1D7 1 first flash period (SPEED INK - default &0A @ 0.02
seconds)

&B7D3 &B1D8 1 second flash period (SPEED INK - default &0A @ 0.02
seconds)

&B7D4 &B1D9 1+16 Border and Pens' First Inks (as hardware numbers):

&B7D4 &B1D9 1 hw &04 = sw 1 (blue) border

&B7D5 &B1DA 1 hw &04 = sw 1 (blue) pen 0

&B7D6 &B1DB 1 hw &0A = sw 24 (bright yellow) pen 1

&B7D7 &B1DC 1 hw &13 = sw 20 (bright cyan) pen 2

&B7D8 &B1DD 1 hw &0C = sw 6 (bright red) pen 3

&B7D9 &B1DE 1 hw &0B = sw 26 (bright white) pen 4

&B7DA &B1DF 1 hw &14 = sw 0 (black) pen 5

&B7DB &B1E0 1 hw &15 = sw 2 (bright blue) pen 6

&B7DC &B1E1 1 hw &0D = sw 8 (bright magenta) pen 7

&B7DD &B1E2 1 hw &06 = sw 10 (cyan) pen 8

&B7DE &B1E3 1 hw &1E = sw 12 (yellow) pen 9

&B7DF &B1E4 1 hw &1F = sw 14 (pale blue) pen 10

The Amstrad CPC Firmware Guide 26

6128 464 Size Comments on the memory locations

&B7E0 &B1E5 1 hw &07 = sw 16 (pink) pen 11

&B7E1 &B1E6 1 hw &12 = sw 18 (bright green) pen 12

&B7E2 &B1E7 1 hw &19 = sw 22 (pale green) pen 13

&B7E3 &B1E8 1 hw &04 = sw 1 (blue) pen 14

&B7E4 &B1E9 1 hw &17 = sw 11 (sky blue) pen 15

&B7E5 &B1EA 1+16 Border and Pens' Second Inks (as hardware numbers):

&B7E5 &B1EA 1 hw &04 = sw 1 (blue) border

&B7E6 &B1EB 1 hw &04 = sw 1 (blue) pen 0

&B7E7 &B1EC 1 hw &0A = sw 24 (bright yellow) pen 1

&B7E8 &B1ED 1 hw &13 = sw 20 (bright cyan) pen 2

&B7E9 &B1EE 1 hw &0C = sw 6 (bright red) pen 3

&B7EA &B1FF 1 hw &0B = sw 26 (bright white) pen 4

&B7EB &B1F0 1 hw &14 = sw 0 (black) pen 5

&B7EC &B1F1 1 hw &15 = sw 2 (bright blue) pen 6

&B7ED &B1F2 1 hw &0D = sw 8 (bright magenta) pen 7

&B7EE &B1F3 1 hw &06 = sw 10 (cyan) pen 8

&B7EF &B1F4 1 hw &1E = sw 12 (yellow) pen 9

&B7F0 &B1F5 1 hw &1F = sw 14 (pale blue) pen 10

&B7F1 &B1F6 1 hw &07 = sw 16 (pink) pen 11

&B7F2 &B1F7 1 hw &12 = sw 18 (bright green) pen 12

&B7F3 &B1F8 1 hw &19 = sw 22 (pale green) pen 13

&B7F4 &B1F9 1 hw &04 = sw 1 (bright yellow) pen 14

&B7F5 &B1FA 1 hw &17 = sw 11 (pink) pen 15

&B7F6 &B1FB 1

&B7F7 &B1FC 1

&B7F8 &B1FD 1

&B7F9 &BlFE 2

&B7FB &B200 2

&B7FD

&B802 1+1

&B804 1 number of entries in the Printer Translation Table (normally
10)

&B805 20*2 Printer Translation Table; each entry comprises: byte 1:
screen code byte 2: pnnter code

&B805 2 screen &A0 printer &5E (acute accent)

&B807 2 screen &A1 printer &5C (\)

&B809 2 screen &A2 printer &7B ({)

&B80B 2 screen &A3 printer &23 (#)

&B80D 2 screen &A6 printer &40 (@)

&B80F 2 screen &AB printer &7C (|)

&B811 2 screen &AC printer &7D (})

&B813 2 screen &AD printer &7E (~)

The Amstrad CPC Firmware Guide 27

6128 464 Size Comments on the memory locations

&B815 2 screen &AE printer &5D (])

&B817 2 screen &AF printer &SE ([)

&B819 20 room for ten more translations

&B82D &B100 1

&B82E &B101 1

&B82F &B102 2

&B831 &B104 1

&B832 &B105 2 temporary store for stack pointer (SP) during interrupt
handling

&B834 &B107 &70 temporary machine stack (from &B8B3 downwards) during
interrupt handling

&B8B4 &B187 4 TIME (stored with the LB first - four bytes give >166 days;
three bytes give >15 hours)

&B8B8 &B18B 1

&B8B9 &B18C 2

&B8BB &B18E 2

&B8BD &B190 2 address of the first ticker block in chain (if any)

&B8BF &B192 1 Keyboard scan flag (&00=scan not needed; &01=scan
needed)

&B8C0 &B193 2 address of the first event block in chain (if any)

&B8C2 &B195 1

&B8C3 &B196 &10 buffer for last RSX or RSX command name (last character
has bit 7 set)

&B8D3 &B1A6 2 address of first ROM or RSX chaining block in chain

&B8D5 1 RAM bank number

&B8D6 &B1A8 1 Upper ROM status (eg select number)

&B8D7 &B1A9 2 entry point of foreground ROM in use (eg &C006 for BASIC
ROM)

&B8D9 &B1AB 1 foreground ROM select address (0 for the BASIC ROM)

&B8DA 16*2 ROM entry IY value (ie the address table) - the 6128 has
ROMs numbered from 0 to 15:

 &B1AC 7*2 ROM entry IY value (ie the address table)

&B8DA 2 ROM 0 IY (not for the 464)

&B8DC &B1AC 2 ROM 1 IY

&B8DE &B1AE 2 ROM 2 IY

&B8E0 &B1B0 2 ROM 3 IY

&B8E2 &B1B2 2 ROM 4 IY

&B8E4 &B1B4 2 ROM 5 IY

&B8E6 &B1B6 2 ROM 6 IY

&B8E8 &B1B8 2 ROM 7 IY (usually &A700 for AMSDOS/CPM ROM)

&B8EA 2 ROM 8 IY (not 464)

&B8EC 2 ROM 9 IY (not 464)

&B8EE 2 ROM 10 IY (not 464)

&B8F0 2 ROM 11 IY (not 464)

The Amstrad CPC Firmware Guide 28

6128 464 Size Comments on the memory locations

&B8F2 2 ROM 12 IY (not 464)

&B8F4 2 ROM 13 IY (not 464)

&B8F6 2 ROM 14 IY (not 464)

&B8F8 2 ROM 15 IY (not 464)

&B8FA 6 6 bytes of &FF

 &B1BA 14 14 bytes of &00

&B900 &B900 12*3 High Kernel Jumpblock (on the 464 this block is 11*3 bytes
in size)

&B924 &B921 &1C0 routines used by the High Kernel Jumpblock (on the 464
this is &1C8 bytes in size)

&BAE4 &BAE9 bytes of &FF (&1C bytes on 6128, &17 bytes on 464)

&BB00 &BB00 26*3 Key Manager Jumpblock

&BB4E &BB4E 36*3 Text VDU Jumpblock

&BBBA &BBBA 23*3 Graphics VDU Jumpblock

&BBFF &BBFF 34*3 Screen Pack Jumpblock

&BC65 &BC65 22*3 Cassette (and Disc if fitted) Manager Jumpblock

&BCA7 &BCA7 11*3 Sound Manager Jumpblock

&BCC8 &BCC8 25*3 Kernel Jumpblock

&BD13 &BD13 26*3 Machine Pack Jumpblock (on the 464 this block is 14*3
bytes in size)

&BD61 &BD3D 32*3 Maths Jumpblock (on the 464 this block is 48*3 bytes in
size)

&BDCD &BDCD 14*3 Firmware Indirections (on the 464 this block is 13*3 bytes
in size

&BDF7 &BDF4 bytes of &00 (&09 bytes on 6128, &0C bytes on the 464)
the lower limit of Machine Stack if no Disc Drive

&BE00 &BE00 &40 &40 bytes of &FF

&BE40 &BE40 &4x used by the AMSDOS ROM if a disc drive is fitted
(otherwise &4x bytes of &FF)

&BE40 &BE40 2 (address &A910)

&BE42 &BE42 2 address of drive A XDPB

&BE44 &BE44 9 Disc Set Up timing block:

&BE44 &BE44 2 motor on period (default &0032; fastest &0023 @ 20mS)

&BE46 &BE46 2 motor off period (default &00FA; fastest &00C8 @ 20mS)

&BE48 &BE48 1 write current off period (default &AF @ 10æS)

&BE49 &BE49 1 head settle time (default &0F @ 1mS)

&BE4A &BE4A 1 step rate period (default &0C; fastest &0A @ 1mS)

&BE4B &BE4B 1 head unload delay (default &01)

&BE4C &BE4C 1 b0=non DMA mode; b1 to b7=head load delay (default
&03)

&BE4D &BE4D 2

&BE4F &BE4F 1 Drive Header Information Block:

&BE4F &BE4F 1 last track used

&BE50 &BE50 1 head number (&00)

&BE51 &BE51 1 last sector used

The Amstrad CPC Firmware Guide 29

6128 464 Size Comments on the memory locations

&BE52 &BE52 1 log2(sector size)-7

&BE53 &BE53 1

&BE54 &BE54 1

&BE55 &BE55 1

&BE56 &BE56 1

&BE58 &BE58 1

&BE59 &BE59 1

&BE5D &BE5D 1

&BE5E &BE5E 1

&BE5F &BE5F 1 disc motor flag (&00=off;&01=on - strangely reversed)

&BE60 &BE60 2 address of buffer for directory entries block (&A930)

&BE62 &BE62 2 as &BE76 (ie&A9B0)

&BE64 &BE64 2

&BE66 &BE66 1 disc retries (default &10)

&BE67 &BE67 &11 AMSDOS Ticker and Event Block:

&BE67 &BE67 2 ticker chaining address

&BE69 &BE69 2 tick count

&BE6B &BE6B 2 recharge count

&BE6D &BE6D 2 event chaining address

&BE6F &BE6F 1 count

&BE70 &BE70 1 class (asynchronous event)

&BE71 &BE71 2 ROM routine address (&C9D6)

&BE73 &BE73 1 ROM select number (&07 ie the AMSDOS/CPM ROM)

&BE74 &BE74 1 last sector number used

&BE75 &BE75 1

&BE76 &BE76 2 address of «K buffer, or of header info block (for WRlTE
SECTOR etc)

&BE78 &BE78 1 disc error message flag (&00=on; &FF=off - reversed
again)

&BE7D &BE7D 2 address of AMSDOS reserved area (&A700)

&BE7F &BE7F x area used by AMSDOS to copy routines into RAM for
running

&BE80 &BE80 &80 &80 bytes of &FF (limit of machine stack if disc drive fitted)

&BF00 &BF00 xy &xy bytes of &00)

&BFxy machine stack (in theory this stack could extend down
much further)

&BFFF &BFFF upper limit of machine stack

The Amstrad CPC Firmware Guide 30

The area from &C000 to &FFFF is taken up by the screen memory - the layout of which is illustrated
below. Printed below are diagrams which show how the CPC uses the bytes of screen memory in the
different MODEs. For each byte:

• in MODE 2 (where there are two colours only, each pixel needs only one bit - either on or off)

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

p0 p1 p2 p3 p4 p5 p6 p7

• (the pixels are arranged with p0 being the leftmost one, etc)

• in MODE 1 (where four colours are available and so two bits are needed for each pixel - 1
byte represents 4 pixels)

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

p0(1) p1(1) p2(1) p3(1) p0(0) p1(0) p2(0) p3(0)

• (each pixel is twice as wide as in MODE 2)

• in MODE 0 (where sixteen colours are possible and four bits are needed for each pixel - 1
byte represents 2 pixels)

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

p0(0) p1(0) p0(2) p1(2) p0(1) p1(1) p0(3) p1(3)

• (each pixel is four times as wide as in MODE 2)

NB: The numbers in brackets show which bit of the pixel's pen number the screen byte bit refers to.
For example in MODE 1, the 4 most significant bits of the byte hold bit 1 of the pixel's pen value and
the least signifcant bits hold bit 0 of the pen value.

LINE R0W0 R0W1 R0W2 R0W3 R0W4 R0W5 R0W6 R0W7

1 C000 C800 D000 D800 E000 E800 F000 F800

2 C050 C850 D050 D850 E050 E850 F050 F850

3 C0A0 C8A0 D0A0 D8A0 E0A0 E8A0 F0A0 F8A0

4 C0F0 C8F0 D0F0 D8F0 E0F0 E8F0 F0F0 F8F0

5 C140 C940 D140 D940 E140 E940 F140 F940

6 C190 C990 D190 D990 E190 E990 F190 F990

7 C1E0 C9E0 D1E0 D9E0 E1E0 E9E0 F1E0 F9E0

8 C230 CA30 D230 DA30 E230 EA30 F230 FA30

9 C280 CA80 D280 DA80 E280 EA80 F280 FA80

10 C2D0 CAD0 D2D0 DAD0 E2D0 EAD0 F2D0 FAD0

11 C320 CB20 D320 DB20 E320 EB20 F320 FB20

12 C370 CB70 D370 DB70 E370 EB70 F370 FB70

13 C3C0 CBC0 D3C0 DBC0 E3C0 EBC0 F3C0 FBC0

14 C410 CC10 D410 DC10 E410 EC10 F410 FC10

15 C460 CC60 D460 DC60 E460 EC60 F460 FC60

The Amstrad CPC Firmware Guide 31

16 C4B0 CCB0 D4B0 DCB0 E4B0 ECB0 F4B0 FCB0

17 C500 CD00 D500 DD00 E500 ED00 F500 FD00

18 C550 CD50 D550 DD50 E550 ED50 F550 FD50

19 C5A0 CDA0 D5A0 DDA0 E5A0 EDA0 F5A0 FDA0

20 C5F0 CDF0 D5F0 DDF0 E5F0 ED50 F550 FD50

21 C640 CE40 D640 DE40 E640 EE40 F640 FE40

22 C690 CE90 D690 DE90 E690 EE90 F690 FE90

23 C6E0 CEE0 D6E0 DEE0 E6E0 EEE0 F6E0 FEE0

24 C730 CF30 D730 DF30 E730 EF30 F730 FF30

25 C780 CF80 D780 DF80 E780 EF80 F780 FF80

spare start C7D0 CFD0 D7D0 DFD0 E7D0 EFD0 F7D0 FFD0

spare end C7FF CFFF D7FF DFFF E7FF EFFF F7FF FFFF

Once the whole screen has been scrolled in any direction, the table will become incorrect. On
scrolling, all the above addresses will have an offset (MOD &800) added, derived as follows:

• +&02 per scroll to the left (2, 1 or ½ character in MODE 2, MODE 1 or MODE 0 respectively)

• -&02 per scroll to the right (2, 1 or ½ character in MODE 2, MODE 1 or MODE 0 respectively)

• +&50 per scroll up one line

• -&50 per scroll down one line

If scrolled far enough, a screen row may sit across the boundaries of the screen memory area, whose
bottom end will then wrap around to join up with the top (ie byte &FFFF will be followed by byte &C000
assuming the normal screen area). If before scrolling however, a window had been set up smaller than
the whole screen then the table will remain accurate despite any scrolling. The `spare' areas of screen
memory are filled with bytes of the relevant PAPER value each time there is a full screen CLS, and
are not really available for other uses. After scrolling the spare areas may be used as screen with
other bytes becoming spare.

The Amstrad CPC Firmware Guide 32

The Amstrad CPC Firmware Guide 33

The Firmware Guide – Summary

The Firmware Jumpblock is the recommended method of communicating with the routines in the lower
ROM - it is used by BASIC, and it should also be used by other programs. The reason for using the
jumpblock is that the routines in the lower ROM are located at different positions on the different
machines. The entries in the jumpblock, however, are all in the same place - the instructions in the
jumpblock redirect the computer to the correct place in the lower ROM. Thus, providing a program
uses the jumpblock, it should work on any CPC computer. By altering the firmware jumpblock it is
possible to make the computer run a different routine from normal. This could either be a different
routine in the lower or upper ROM, or a routine written by the user - this is known as 'patching the
jumpblock'. It is worth noting that because BASIC uses the firmware jumpblock quite heavily, it is
possible to alter the effect of BASIC commands. The following example will change the effect of calling
SCR SET MODE (&BC0E) - instead of changing the mode, any calls to this location will print the letter
'A'. The first thing to do is to assemble the piece of code that will be used to print the letter - this is
printed below and starts at &4000.

ORG &4000
LD A,65 ; 65 is ASCII FOR 'A'
CALL &BB5A ; TXT OUTPUT
RET ; return from subroutine

The jumpblock entry for SCR SET MODE is now patched so that it reroutes all calls to &BC0E away
from the lower ROM and to our custom routine at &4000. This is done by changing the bytes at
&BC0E, &BC0F and &BC10 to &C3, &00, &40 respectively (ie JP &4000). Any calls to &BC0E or
MODE commands will now print the letter A instead of changing mode. The indirections jumpblock
contains a small number of routines which are called by the rest of the firmware. By altering this
jumpblock, it is possible to alter the way in which the firmware operates on a large scale - thus it is not
always necessary to patch large numbers of entries in the firmware jumpblock. There are two
jumpblocks which are to do with the Kemel (ie the high and low Kernel jumpblocks). The high
jumpblock allows ROM states and interrupts to be altered, and also controls the introduction of RSXs.
The low jumpblock contains general routines and restart instructions which are used by the computer
for its own purposes.

The Amstrad CPC Firmware Guide 34

The Amstrad CPC Firmware Guide 35

The Kernel

&BCC8 KL CHOKE OFF

Action Clears all event queues and timer lists, with the exception of keyboard scanning and sound routines

Entry No entry conditions

Exit
B contains the foreground ROM select address (if any), DE contains the ROM entry address, C holds
the ROM select address for a RAM foreground program, AF and HL are corrupt, and all others are
preserved

&BCCB KL ROM WALK

Action Finds and initialises all background ROMs

Entry DE holds the address of the first usable byte of memory, HL holds the address of the last usable byte

Exit DE holds the address of the new first usable byte of memory, HL holds the address of the new last
usable byte, AF and BC are corrupt, and all other registers are preserved

Notes
This routine looks at the ROM select addresses from 0 to l5 (1 to 7 for the 464) and calls the
initialisation routine of any ROMs present; these routines may reserve memory by adjusting DE and HL
before returning control to KL ROM WALK, and the ROM is then added to the list of command handling
routines

&BCCE KL INIT BACK

Action Finds and initialises a specific background ROM

Entry C contains the ROM select address of the ROM, DE holds the address of the first usable byte of
memorv, HL holds the address of the last usable byte of memory

Exit DE holds the address of the new first usaUe byte of memory, HL holds the address of the new last
usable byte. AF and B are corrupt, and all other registers are preserved

Notes
The ROM select address must be in the range of 0 to 15 (or 1 to 7 for the 464) although address 7 is tor
the AMSDOS/CPM ROM if present. The ROM's initialisation routine is then called and some memory
may be reserved for the ROM by adjusting the values of DE and HL before returning control to KL INlT
BACK

&BCD1 KL LOG EXT

Action Logs on a new RSX to the firmware

Entry BC contains the address of the RSX's command table, HL contains the address of four bytes
exclusively for use by the firmware

Exit DE is corrupt, and all other registers are preserved

&BCD4 KL FIND COMMAND

Action Searches an RSX, background ROM or foreground ROM, to find a command in its table

Entry HL contains the address of the command name (in RAM only) which is being searched for

Exit
If the narne was found in a RSX or background ROM then Carry is true, C contains the ROM select
address, and HL contains the address of the routine; if the command was not found, then Carry is false,
C and HL are corrupt; in either case, A, B and DE are corrupt, and all others are preserved

Notes The command names should be in upper case and the last character should have &80 added to it; the
sequence of searching is RSXs, then ROMs with lower numbers before ROMs with higher numbers

&BCD7 KL NEW FRAME FLY

Action Sets up a frame flyback event block which will be acted on whenever a frame flyback occurs

Entry HL contains the address of the event block in the central 32K of RAM, B contains the event class. C
contains the ROM select address (if any), and DE contains the address if the event routine

Exit AF, DE and HL are corrupt, and all other registers are preserved

&BCDA KL ADD FRAME FLY

Action Adds an existing but deleted frame flyback event block to the list of routines run when a frame flyback
occurs

Entry HL contains the address of the event block (in the central 32K of RAM)

The Amstrad CPC Firmware Guide 36

Exit AF, DE and HL are corrupt, and all others are preserved

&BCDD KL DEL FRAME FLY

Action Removes a frame flyback event block from the list of routines which are mn when a frame flyback
occurs

Entry HL contains the address of the event block

Exit AF, DE and HL are corrupt, and all others are preserved

&BCE0 KL NEW FAST TICKER

Action Sets up a fast ticker event block which will be run whenever the l/300th second ticker interrupt occurs

Entry HL contains the address of the event block (in the central 32K of RAM), B contains the event class, C
contains the ROM select address (if any), and DE contains the address of the event routine

Exit AF, DE and HL are corrupt, and all other registers are preserved

&BCE3 KL ADD FAST TICKER

Action Adds an existing but deleted fast ticker event block to the list of routines which are run when the l/300th
sec ticker interrupt occurs

Entry HL contains the address of the event block

Exit AF, DE and HL are corrupt, and all the other registers are preserved

&BCE6 KL DEL FAST TICKER

Action Removes a fast ticker event block from the list of routines run when the l/300th sec ticker interrupt
occurs

Entry HL contains the address of the event block

Exit AF, DE and HL are corrupt, and all others are preserved

&BCE9 KL ADD TICKER

Action Sets up a ticker event block which will be run whenever a 1/50th second ticker interrupt occurs

Entry HL contains the address of the event block (in the central 32K of RAM), DE contains the initial value for
the counter, and BC holds the value that the counter will be given whenever it reaches zero

Exit AF, BC, DE and HL are corrupt, and all the other registers are preserved

Notes
Every 1/50th of a second all the tick blocks are looked at and their counter is decreased by 1; when the
counter reaches zero, the event is `kicked' and the counter is loaded with the value in BC; any tick block
with a counter of 0 is ignored, and therefore if the value in BC is 0, the event will be kicked only once
and ignored after that

&BCEC KL DEL TICKER

Action Removes a ticker event block from the list of routines that are run when a l/50th sec ticker interrupt
occurs

Entry HL contains the address of the event block

Exit
If the event block was found, then Carry is true, and DE holds the value remaining of the counter; if the
event block was not found, then Carry is false, and DE is corrupt; in both cases, A, HL and the other
flags are corrupt, and all other registers are preserved

&BCEF KL INIT EVENT

Action Initialises an event block

Entry HL contains the address of the event block (in the central 32K of RAM), B contains the class of event,
and C contains the ROM select address, and DE holds the address of the event routine

Exit HL holds the address of the event block+7, and all other registers are preserved

Notes

The event class is derived as follows
bit 0 -indicates a near address
bits 1 to 4 - hold the synchronous event priority
bit 5 - always zero
bit 6 - if bit 6 is set, then it is an express event
bit 7 - if bit 7 is set, then it is an asynchronous event.
Asynchronous events do not have priorities; if it is an express asynchronous event, then its event
routine is called from the interrupt path; if it is a normal asynchronous event, then its event routine is
called just before returning from the interrupt; if it is an express synchronous event, then it has a higher

The Amstrad CPC Firmware Guide 37

priority than normal synchronous events, and it may not be disabled through use of KL EVENT
DISABLE; if the near address bit is set, then the routine is located in the central 32K of RAM and is
called directly, so saving time; no event may have a priority of zero

&BCF2 KL EVENT

Action Kicks an event block

Ently HL contains the address of the event block

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

&BCF5 KL SYNC RESET

Action Clears the synchronous event queue

Entry No entry conditions

Exit AF and HL are corrupt, and all other registers are preserved

Notes When using this routine, all events that are waiting to be dealt with are simply discarded

&BCF8 KL DEL SYNCHRONOUS

Action Removes a synchronous event from the event queue

Entry HL contains the address of the event block

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

&BCFB KL NEXT SYNC

Action Finds out if there is a synchronous event with a higher priority

Entry No entry conditions

Exit
If there is an event to be processed, then Carry is true, HL contains the address of the event block, and
A contains the priority of the previous event; if there is no event to be processed, then Carry is false,
and A and HL are corrupt; in either case, DE is corrupt, and all other registers are preserved

&BCFE KL DO SYNC

Action Runs a synchronous event routine

Entry HL contains the address of the event block

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

Notes See KL DONE SYNC below

&BD01 KL DONE SYNC

Action Finishes running a synchronous event routine

Entry A contains the priority of the previous event, and HL contains the address of the event block

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

Notes
When an event that is waiting to be processed has been found by KL NEXT SYNC, the event routine
should be run by KL DO SYNC; after this KL DONE SYNC should be called so that the event counter
can be decreased - if the counter is greater than zero then the event is placed back on the synchronous
event queue

&BD04 KL EVENT DISABLE

Action Disables norrnal synchronous events

Entry No entry conditions

Exit HL is corrupt, and all other registers are preserved

&BD07 KL EVENT ENABLE

Action Enables normal synchronous events

Entry No entry conditions

Exit HL is corrupt, and all other registers are preserved

&BD0A KL DISARM EVENT

Action Disarrns a specific event and stops it from occurring

The Amstrad CPC Firmware Guide 38

Entry HL contains the address of the event block

Exit AF is corrupt, and all other registers are preserved

Notes This routine should be used to disarm only asynchronous events; see also KL DEL SYNCHRONOUS

&BD0D KL TIME PLEASE

Action Returns the time that has elapsed since the computer was switched on or reset (in 1/300ths of a
second)

Entry No entry conditions

Exit DEHL contains the four byte count of the time elapsed, and all other registers are preserved

Notes D holds the most signifilcant byte of the time elapsed, and L holds the least significant; the four byte
count overflows after approximately l66 days have elapsed.

&BD10 KL TIME SET

Action Sets the elapsed time (in l¡300ths of a second)

Entry DEHL contains the four byte count of the time to set

Exit AF is corrupt, and all other registers are preserved

Low Kernel Jumpblock

&0000 RESET ENTRY (RST 0)

Action Resets the computer as if it has just been switched on

Entry No entry conditions

Exit This routine is never returned from

Notes After initialisation of the hardware and firmware, control is handed over to ROM 0 (usually BASIC)

&0008 LOW JUMP (RST 1)

Action Jumps to a routine in either the lower ROM or low RAM

Entry No entry conditions - all the registers are passed to the destination routine unchanged

Exit The registers are as set by the routine in the lower ROM or RAM or are returned unaltered

Notes

The RST 1 instruction is followed by a two byte low address, which is defmed as follows
if bit 15 is set, then the upper ROM is disabled
if bit 14 is set, then the lower ROM is disabled
bits 13 to 0 contain the address of the routine to jump to. This command is used by the majority of entries
in the main firmware jumpblock

&000B KL LOW PCHL

Action Jumps to a routine in either the lower ROM or low RAM

Entry HL contains the low address - all the registers are passed to the destination routine unchanged

Exit The registers are as set by the routine in the lower ROM or RAM or are returned unaltered

Notes
The two byte low address in the HL register pair is defined as follows
if bit 15 is set, then the upper ROM is disabled
if bit 14 is set, then the lower ROM is disabled
bits 13 to 0 contain the address of the routine to jump to

&000E PCBC INSTRUCTION

Action Jumps to the specified address

Entry BC contains the address to jump to - all the registers are passed to the destination routine unaltered

Exit The registers are as set by the destination routine or are returned unchanged

&0010 SIDE CALL (RST 2)

Action Calls a routine in ROM, in a group of up to four foreground ROMs

Entry No entry conditions - all the registers apart from IY are passed to the destination routine unaltered

The Amstrad CPC Firmware Guide 39

Exit IY is corrupt, and the other registers are as set by the destination routine or are returned unchanged

Notes
The RST 2 instruction is followed by a two byte side address, which is defined as follows
bits 14 and 15 give a number between 0 and 3, which is added to the main foreground ROM select
address - this is then used as the ROM select address bits 0 to 13 contain the address to which is added
&C000 - this gives the address of the routine to be called

&0013 KL SIDE PCHL

Action Calls a routine in another ROM

Entry HL contains the side address - all the registers apart from IY are passed to the destination routine
unaltered

Exit IY is corrupt, and the other registers are as set by the destination routine or are returned unchanged

Notes
The two byte side address is defined as follows
bits 14 and 15 give a number between 0 and 3, which is added to the main foreground ROM select
address - this is then used as the ROM select address bits 0 to 13 contain the address to which is added
&C000 - this gives the address of the routine to be called

&0016 PCDE INSTRUCTION

Action Jumps to the specified address

Entry DE contains the address to jump to - all the registers are passed to the destination routine unaltered

Exit The registers are as set by the destination routine or are returned unchanged

&0018 FAR CALL (RST 3)

Action Calls a routine anywhere in ROM or ROM

Entry No entry conditions - all the registers apart from IY are passed to the destination routine unaltered

Exit IY is preserved, and the other registers are as set by the destination routine or are returned unchanged

Notes

The RST 3 instruction is followed by a two byte in-line address. At this address, there is a three byte far
address, which is defined as follows
bytes 0 and 1 give the address of the routine to be called
byte 2 is the ROM select byte which has values as follows
&00 to &FB-- select the given upper ROM, enable the upper ROM and disable the lower ROM
&FC - no change to the ROM selection, enable the upper and lower ROMs
&FD - no change to the ROM selection, enable the upper ROM and disable the lower ROM
&FE - no change to the ROM selection, disable the upper ROM and enable the lower ROM
&FF - no change to the ROM selection, disable the upper and lower ROMs
When it is retumed from, the ROM selection and state are restored to their settings before the RST 3
command

&001B KL FAR PCHL

Action Calls a routine, given by the far address in HL & C, anywhere in RAM or ROM

Entry HL holds the address of the routine to be called, and C holds the ROM select byte - all the registers apart
from IY are passed to the destination routine unaltered

Exit IY is preserved, and the other registers are as set by the destination routine or are returned unchanged

Notes See FAR CALL (RST 3) above for more details on the ROM select byte

&001E PCHL INSTRUCTION

Action Jumps to the specified address

Entry HL contains the address to jump to - all the registers are passed to the destination routine unaltered

Exit The registers are as set by the destination routine or are returned unchanged

&0020 RAM LAM

Action Puts the contents of a RAM memory location into the A register

Entry HL contains the address of the memory location

Exit A holds the contents of the memory location, and all other registers are preserved

Notes This routine always reads from RAM, even if the upper or lower ROM is enabled

&0023 KL FAR CALL

Action Calls a routine anywhere in RAM or ROM

The Amstrad CPC Firmware Guide 40

Entry HL holds the address of the three byte far address that is to be used - all the registers apart from IY are
passed to the destination routine unaltered

Exit IY is preserved, and the other registers are as set by the destination routine or are returned unchanged

Notes See FAR CALL above for more details on the three byte far address

&0028 FIRM JUMP (RST 5)

Action Jumps to a routine in either the lower ROM or the central 32K of RAM

Entry No entry conditions - all the registers are passed to the destination routine unchanged

Exit The registers are as set by the routine in the lower ROM or RAM or are returned unaltered

Notes The RST 5 instruction is followed by a two byte address, which is the address to jump to; before the jump
is made, the lower ROM is enabled, and is disabled when the destination routine is returned from

&0030 USER RESTART (RST 6)

Action This is an RST instruction that may be set aside by the user for any purpose

Entry Defined by the user

Exit Defined by the user

Notes The bytes from &0030 to &0037 are available for the user to put their own code in if they wish

&0038 INTERRUPT ENTRY (RST 7)

Action Deals with normal interrupts

Entry No entry conditions

Exit All registers are preserved

Notes
The RST 7 instruction must not be used by the user; any external interrupts that are generated by
hardware on the expansion port will be dealt with by the EXT INTERRUPT routine (see Low Kernel
Jumpblock)

&003B EXT INTERRUPT

Action This area is set aside for dealing with external interrupts that are generated by any extra hardware

Entry No entry conditions

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

Notes
If any external hardware is going to generate interrupts, then the user must patch the area from &003B to
&003F so that the computer can deal with the external interrupt; when an external interrupt occurs, the
lower ROM is disabled and the code at &003B is called; the default external interrupt routine at &003B
simply returns, and this will cause the computer to hang because the interrupt will continue to exist

High Kernel Jumpblock

&B900 KL U ROM ENABLE

Action Enables the current upper ROM

Entry No entry conditions

Exit A contains the previous state of the ROM, the flags are corrupt, and all other registers are preserved

Notes
After this routine has been called, all reading from addresses between &C000 and &FFFF refers to the
upper ROM, and not the top 16K of RAM which is usually the screen memory; any writing to these
addresses still affects the RAM as, by its nature, ROM cannot be written to

&B903 KL U ROM DISABLE

Action Disables the upper ROM

Entry No entry conditions

Exit A contains the previous state of the ROM, the flags are corrupt, and all other registers are preserved

Notes After this routine has been called, all reading from addresses between &C000 and &FFFF refers to the
top 16K of RAM which is usually the screen memory

The Amstrad CPC Firmware Guide 41

&B906 KL L ROM ENABLE

Action Enables the lower ROM

Entry No entry conditions

Exit A contains the previous state of the ROM, the flags are corrupt, and all other registers are preserved

Notes
After this routine has been called, all reading from addresses between &0000 and &4000 refers to the
lower ROM, and not the bottom 16K of RAM; any writing to these addresses still affects the RAM as a
ROM cannot be written to; the lower ROM is automatically enabled when a firmware routine is called,
and is then disabled when the routine returns

&B909 KL L ROM DISABLE

Action Disables the lower ROM

Entry No entry conditions

Exit A contains the previous state of the ROM, the flags are corrupt, and all other registers are preserved

Notes
After this routine has been called, all reading from addresses between &0000 and &4000 refers to the
bottom 16K of RAM; the lower ROM is automatically enabled when a firmware routine is called, and is
then disabled when the routine returns

&B90C KL ROM RESTORE

Action Restores the ROM to its previous state

Entry A contains the previous state of the ROM

Exit AF is corrupt, and all other registers are preserved

Notes The previous four routines all return values in the A register which are suitable for use by KL ROM
RESTORE

&B90F KL ROM SELECT

Action Selects an upper ROM and also enables it

Entry C contains the ROM select address of the required ROM

Exit C contains the ROM select address of the previous ROM, and B contains the state of the previous ROM

&B912 KL CURR SELECTION

Action Gets the ROM select address of the current ROM

Entry No entry conditions

Exit A contains the ROM select address of the current ROM, and all other registers are preserved

&B915 KL PROBE ROM

Action Gets the class and version of a specified ROM

Entry C contains the ROM select address of the required ROM

Exit A contains the class of the ROM, H holds the version number, L holds me mark number, B and the flags
are corrupt, and all other registers are preserved

Notes

The ROM class may be one of the following:
&00 - a foregroumd ROM
&01 - a background ROM
&02 - an extension foreground ROM
&80 - the built in ROM (ie the BASIC ROM)

&B918 KL ROM DESELECT

Action Selects the previous upper ROM and sets its state

Entry C contains me ROM select address of the ROM to be reselected, and B contains the state of the
required ROM

Exit C contains the ROM select address of me current ROM, B is corrupt, and all others are preserved

Notes This routine reverses the acoon of KL ROM SELECT, and uses the values that it returns in B and C

&B91B KL LDIR

Action Switches off the upper and lower ROMs, and moves a block of memory

The Amstrad CPC Firmware Guide 42

Entry As for a standard LDIR instruction (ie DE holds the destination location, HL points to the first byte to be
moved, and BC holds the length of the block to be moved)

Exit F, BC, DE amd HL are set as for a normal LDIR instruction, and all other registers are preserved

&B91E KL LDDR

Action Switches off the upper and lower ROMs, amd moves a block of memory

Entry As for a standard LDDR instruction (ie DE holds the first desination location, HL points to the highest
byte lit in memory to be moved, amd BC holds the number of bytes to be moved)

Exit F, BC, DE amd HL, are set as for a nommal LDDR instruction, and all other registers are preserved

&B921 KL POLL SYNCHRONOUS

Action Tests whether an event with a higher priority than the current event is waiting to be dealt with

Entry No entry conditions

Exit If there is a higher priority event, then Carry is false; if there is no higher priority event, then Carry is true;
in either case, A and the other flags are corrupt, and all other registers are preserved

&B92A KL SCAN NEEDED

Action Ensures that the keyboard is scanned when the next ticker interrupt occurs

Entry No entry conditions

Exit AF amd HL are corrupt, amd all other registers are preserved

Notes This routine is useful for scanning the keyboard when interrupts are disabled and normal key scanning is
not occuring

The Amstrad CPC Firmware Guide 43

The Key Manager

&BB00 KM INITIALISE

Action
Initialises the Key Manager and sets up everything as it is when the computer is first switched on; the
key buffer is emptied, Shift and Caps lock are tumed off amd all the expansion and translation tables are
reset to normal; also see the routine KM RESET below

Entry No entry conditions

Exit AF, BC, DE and HL corrupt, and all other registers are preserved

&BB03 KM RESET

Action Resets the Key Manager; the key buffer is emptied and all current keys/characters are ignored

Entry No entry conditions

Exit AF, BC, DE and HL are corrupt and all other registers are preserved

Notes See also KM INITIALISE above. On the 664 or 6128, the key buffer can also be cleared separately by
calling the KM FLUSH routine

&BB06 KM WAIT CHAR

Action Waits for the next character from the keyboard buffer

Entry No entry conditions

Exit Carry is true, A holds the character value, the other flags are corrupt, and all other registers are
preserved

&BB09 KM READ CHAR

Action Tests to see if a character is available from the keyboard buffer, but doesn't wait for one to become
available

Entry No entry conditions

Exit If a character was available, then Carry is true, and A contains the character; otherwise Carry is false,
and A is corrupt; in both cases, the other registers are preserved

&BB0C KM CHAR RETURN

Action Saves a character for the next use of KM WAIT CHAR or KM READ CHAR

Entry A contains the ASCII code of the character to be put back

Exit All registers are preserved

&BB0F KM SET EXPAND

Action Assigns a string to a key code

Entry B holds the key code; C holds the length of the string; HL contains the address of the string (must be in
RAM)

Exit If it is OK, then Carry is true; otherwise Carry is false; in either case, A, BC, DE and HL are corrupt, and
all other registers rlre preserved

&BB12 KM GET EXPAND

Action Reads a character from an expanded string of characters

Entry A holds an expansion token (ie a key code) and L holds the character position number (starts from 0)

Exit If it is OK, then Carry is true, and A holds the character; otherwise Carry is false, and A is corrupt; in
either case, DE and flags are corrupt, and the other registers are preserved

&BB15 KM EXP BUFFER

Action Sets aside a buffer area for character expansion strings

Entry DE holds the address of the buffer and HL holds the length of the buffer

Exit If it is OK, then Carry is true; otherwise Carry is false; in either case, A, BC, DE and HL are corrupt

Notes The buffer must be in the central 32K of RAM and must be at least 49 bytes long

The Amstrad CPC Firmware Guide 44

&BB18 KM WAIT KEY

Action Waits for a key to be pressed - this routine does not expand any expansion tokens

Entry No entry conditions

Exit Carry is true, A holds the character or expansion token, and all other registers are preserved

&BB1B KM READ KEY

Action Tests whether a key is available from the keyboard

Entry No entry conditions

Exit If a key is available, then Carry is true, and A contains the character; otherwise Carry is false, and A is
corrupt; in either case, the other registers are preserved

Notes Any expansion tokens are not expanded

&BB1E KM TEST KEY

Action Tests if a particular key (or joystick direction or button) is pressed

Entry A contains the key/joystick nurnber

Exit If the requested key is pressed, then Zero is false; otherwise Zero is true for both, Carry is false A and
HL are corrupt. C holds the Sbift and Control status and others are preserved

Notes After calling this, C will hold the state of shift and control - if bit 7 is set then Control was pressed, and if
bit 5 is set then Shift was pressed

&BB21 KM GET STATE

Action Gets the state of the Shift and Caps locks

Entry No entry conditions

Exit
If L holds &FF then the shift lock is on, but if L holds &00 then the Shift lock is off; if H holds &FF then
the caps lock is on, and if H holds &00 then the Caps lock is off; whatever the outcome, all the other
registers are preserved

&BB24 KM GET JOYSTICK

Action Reads the present state of any joysticks attached

Entry No entry conditions

Exit H and A contains the state of joystick 0, L holds that state of joystick 1, and all others are preserved

Notes

The joystick states are bit significant and are as follows
Bit 0 - Up Bit
1 - Down Bit
2 - Left Bit
3 - Right Bit
4 - Fire2 Bit
5 - Fire1 Bit
6 - Spare Bit
7 - Always zero
The bits are set when the corresponding buttons or directions are operated

&BB27 KM SET TRANSLATE

Action Sets the token or character that is assigned to a key when neither Shift nor Control are pressed

Entry A contains the key number and B contains the new token or character

Exit AF and HL are corrupt, and all other registers are preserved

Notes

Special values for B are as follows
&80 to &9F - these values correspond to the expansion tokens
&FD - this causes the caps lock to toggle on and off
&FE - this causes the shift lock to toggle on and off
&FF - causes this key to be ignored

&BB2A KM GET TRANSLATE

Action Finds out what token or character will be assigned to a key when neither Shift nor Control are pressed

Entry A contains the key number

Exit A contains the token/character that is assigned, HL and flags are corrupt, and all others are preserved

The Amstrad CPC Firmware Guide 45

Notes See KM SET TRANSLATE for special values that can be returned

&BB2D KM SET SHIFT

Action Sets the token or character that will be assigned to a key when Shift is pressed as well

Entry A contains the key number and B contains the new token or character

Exit AF and HL are corrupt, and all others are preserved

Notes See KM SET TRANSLATE for special values that can be set

&BB30 KM GET SHIFT

Action Finds out what token/character will be assigned to a key when Shift is pressed as well

Entry A contains the key number

Exit A contains the token/character that is assigned, HL and flags are corrupt, and all others are preserved

Notes See KM SET TRANSLATE for special values that can be returned

&BB33 KM SET CONTROL

Action Sets the token or character that will be assigned to a key when Control is pressed as well

Entry A contains the key number and B contains the new token/character

Exit AF and HL are corrupt, and all others are preserved

Notes See KM SET TRANSLATE for special values that can be set

&BB36 KM GET CONTROL

Action Finds out what token or character will be assigned to a key when Control is pressed as well

Entry A contains the key number

Exit A contains the token/character that is assigned, HL and flags are corrupt and all others are preserved

Notes See KM SET TRANSLATE for special values that can be set

&BB39 KM SET REPEAT

Action Sets whether a key may repeat or not

Entry A contains the key number B contains &00 if there is no repeat and &FF is it is to repeat

Exit AF, BC and HL are corrupt, and all others are preserved

&BB3C KM GET REPEAT

Action Finds out whether a key is set to repeat or not

Entry A contains a key number

Exit If the key repeats, then Zero is false; if the key does not repeat, then Zero is true; in either case, A, HL
and flags are corrupt, Carry is false, and all other registers are preserved

&BB3F KM SET DELAY

Action Sets the time that elapses before the first repeat, and also set the repeat speed

Entry H contains the time before the first repeat, and L holds the time between repeats (repeat speed)

Exit AF is corrupt, and all others are preserved

Notes The values for the times are given in 1/5Oth seconds, and a value of 0 counts as 256

&BB42 KM GET DELAY

Action Finds out the time that elapses before the first repeat and also the repeat speed

Entry No entry conditions

Exit H contains the time before the first repeat, and L holds the time between repeats, and all others are
preserved

&BB45 KM ARM BREAK

Action Arms the Break mechanism

The Amstrad CPC Firmware Guide 46

Entry DE holds the address of the Break handling routine, C holds the ROM select address for this routine

Exit AF, BC, DE and HL are corrupt, and all the other registers are preserved

&BB48 KM DISARM BREAK

Action Disables the Break mechanism

Entry No entry conditions

Exit AF and HL are corrupt, and all the other registers are preserved

&BB4B KM BREAK EVENT

Action Generates a Break interrupt if a Break routine has been specified by KM ARM BREAK

Entry No entry conditions

Exit AF and HL are corrupt, and all other registers are preserved

The Amstrad CPC Firmware Guide 47

The Text VDU

&BB4E TXT INITIALISE

Action
Initialise the text VDU to its settings when the computer is switched on, includes resetting all the text
VDU indirections, selecting Stream 0, resetting the text paper to pen 0 and the text pen to pen 1,
moving the cursor to the top left corner of the screen and setting the writing mode to be opaque

Entry No entry conditions

Exit AF, BC, DE and HL are corrupt, and all others are preserved

&BB51 TXT RESET

Action Resets the text VDU indirections and the control code table

Entry No entry conditions

Exit AF, BC, DE and HL are corrupt, and all the other registers are preserved

&BB54 TXT VDU ENABLE

Action Allows characters to be printed on the screen in the current stream

Entry No entry conditions

Exit AF is corrupt, and all other registers are preserved

&BB57 TXT VDU DISABLE

Action Prevents characters from being printed to the current stream

Entry No entry conditions

Exit AF is corrupt, and al1 the other registers are preserved

&BB5A TXT OUTPUT

Action Output a character or control code (&00 to &1F) to the screen

Entry A contains the character to output

Exit All registers are preserved

Notes
Any control codes are obeyed and nothing is printed if the VDU is disabled; characters are printed using
the TXT OUT ACTION routine; if using graphics printing mode, then control codes are printed and not
obeyed

&BB5D TXT WR CHAR

Action Print a character at the current cursor position - control codes are printed and not obeyed

Entry A contains the character to be printed

Exit AF, BC, DE and HL are corrupt, and all others are preserved

Notes This routine uses the TXT WRITE CHAR indirection to put the character on the screen

&BB60 TXT RD CHAR

Action Read a character from the screen at the current cursor position

Entry No entry conditions

Exit
If it was successful then A contains the character that was read from the screen and Carry is true;
otherwise Carry is false, and A holds 0; in either case, the other flags are corrupt, and all registers are
preserved

Notes This routine uses the TXT UNWRITE indirection

&BB63 TXT SET GRAPHIC

Action Enables or disables graphics print character mode

Entry To switch graphics printing mode on, A must be non- zero; to turn it off, A must contain zero

Exit AF corrupt, and all other registers are preserved

Notes When turned on, control codes are printed and not obeyed; characters are printed by GRA WR CHAR

The Amstrad CPC Firmware Guide 48

&BB66 TXT WIN ENABLE

Action Sets the boundaries of the current text window - uses physical coordinates

Entry H hoIds the column number of one edge, D holds the column number of the other edge, L holds the line
number of one edge, and E holds the line number of the other edge

Exit AF, BC, DE and HL are corrupt

Notes The window is not cleared but the cursor is moved to the top left corner of the window

&BB69 TXT GET WINDOW

Action Returns the size of the current window - returns physical coordinates

Entry No entry conditions

Exit
H holds the column number of the left edge, D holds the column number of the right edge, L holds the
line number of the top edge, E holds the line number of the bottom edge, A is corrupt, Carry is false if
the window covers the entire screen, and the other registers are always preserved

&BB6C TXT CLEAR WINDOW

Action Clears the window (of the current stream) and moves the cursor to the top left corner of the window

Entry No entry conditions

Exit AF, BC, DE and HL are corrupt, and alI others are preserved

&BB6F TXT SET COLUMN

Action Sets the cursor's horizontal position

Entry A contains the logical column number to move the cursor to

Exit AF and HL are corrupt, and all the other registers are preserved

Notes See also TXT SET CURSOR

&BB72 TXT SET ROW

Action Sets the cursor's vertical position

Entry A contains the logical line number to move the cursor to

Exit AF and HL are corrupt, and all others are preserved

Notes See also TXT SET CURSOR

&BB75 TXT SET CURSOR

Action Sets the cursor's vertical and horizontal position

Entry H contains the logical column number and L contains the logical line number

Exit AF and HL are corrupt, and all the others are preserved

Notes See also TXT SET COLUMN and TXT SET ROW

&BB78 TXT GET CURSOR

Action Gets the cursor's current position

Entry No entry conditions

Exit H holds the logical column number, L holds the logical line number, and A contains the roll count, the
flags are corrupt, and all the other registers are preserved

Notes The roll count is increased when the screen is scrolled down, and is decreased when it is scrolled up

&BB7B TXT CUR ENABLE

Action Allows the text cursor to be displayed (if it is allowed by TXT CUR ON) - intended for use by the user

Entry No entry conditions

Exit AF is corrupt, and all other registers are preserved

&BB7E TXT CUR DISABLE

Action Prevents the text cursor from being displayed -intended for use by the user

The Amstrad CPC Firmware Guide 49

Entry No entry conditions

Exit AF is corrupt, and all others are preserved

&BB81 TXT CUR ON

Action Allows the text cursor to be displayed - intended for use by the operating system

Entry No entry conditions

Exit All registers and flags are preserved

&BB84 TXT CUR OFF

Action Prevents the text cursor from being displayed -intended for use by the operating system

Entry No entry conditions

Exit All registers and flags are preserved

&BB87 TXT VALIDATE

Action Checks whether a cursor position is within the current window

Entry H contains the logical column number to check, and L holds the logical line number

Exit

H holds the logical column number where the next character will be printed, L holds the logical line
number; if printing at this position would make the window scroll up, then Carry is false and B holds
&FF; if printing at this position would make the window scroll down, then Carry is false and B contains
&00; if printing at the specified cursor position would not scroll the window, then Carry is true and B is
corrupt; always, A and the other flags are corrupt, and all others are preserved

&BB8A TXT PLACE CURSOR

Action Puts a `cursor blob' on the screen at the current cursor position

Entry No entry conditions

Exit AF is corrupt, and all other registers are preserved

Notes It is possible to have more than one cursor in a window (see also TXT DRAW CURSOR); do not use
this routine twice without using TXT REMOVE CURSOR between

&BB8D TXT REMOVE CURSOR

Action Removes a `cursor blob' from the current cursor position

Entry No entry conditions

Exit AF is corrupt, and all the others are preserved

Notes This should be used only to remove cursors created by TXT PLACE CURSOR, but see also TXT
UNDRAW CURSOR

&BB90 TXT SET PEN

Action Sets the foreground PEN for the current stream

Entry A contams the PEN number to use

Exit AF and HL are corrupt, and all other registers are preserved

&BB93 TXT GET PEN

Action Gets the foreground PEN for the current stream

Entry No entry conditions

Exit A contains the PEN number, the flags are corrupt, and all other registers are preserved

&BB96 TXT SET PAPER

Action Sets the background PAPER for the current stream

Entry A contains the PEN number to use

Exit AF and HL are corrupt, and all other registers are preserved

&BB99 TXT GET PAPER

Action Gets the background PAPER for the current stream

Entry No entry conditions

The Amstrad CPC Firmware Guide 50

Exit A contains the PEN number, the flags are corrupt, and all other registers are preserved

&BB9C TXT INVERSE

Action Swaps the current PEN and PAPER colours over for the current stream

Entry No entry conditions

Exit AF and HL are corrupt, and all others are preserved

&BB9F TXT SET BACK

Action Sets the character write mode to either opaque or transparent

Entry For transparent mode, A must be non-zero; for opaque mode, A has to hold zero

Exit AF and HL are corrupt, and all other registers are preserved

Notes Setting the character write mode has no effects on the graphics VDU

&BBA2 TXT GET BACK

Action Gets the character write mode for the current stream

Entry No entry conditions

Exit If in transparent mode, A is non-zero; in opaque mode, A is zero; in either case DE, HL and flags are
corrupt, and the other registers are preserved

&BBA5 TXT GET MATRIX

Action Gets the address of a character matrix

Entry A contains the character whose matrix is to be found

Exit If it is a user-defined matrix, then Carry is true; if it is in the lower ROM then Carry is false; in either
event, HL contains the address of the matrix, A and other flags are corrupt, and others are preserved

Notes
The character matrix is stored in 8 bytes; the first byte is for the top row of the character, and the last
byte refers to the bottom row of the character; bit 7 of a byte refers to the leftmost pixel of a line, and bit
0 refers to the rightmost pixel in Mode 2.

&BBA8 TXT SET MATRIX

Action Installs a matrix for a user-defined character

Entry A contains the character which is being defined and HL contains the address of the matrix to be used

Exit If the character is user-definable then Carry is true; otherwise Carry is false, and no action is taken; in
both cases AF, BC, DE and HL are corrupt, and all other registers are preserved

&BBAB TXT SET M TABLE

Action Sets the address of a user-defined matrix table

Entry DE is the first character in the table and HL is the table's address (in the central 32K of RAM)

Exit
If there are no existing tables then Carry is false, and A and HL are both corrupt; otherwise Carry is
true, A is the first character and HL is the table's address; in both cases BC, DE and the other flags are
corrupt

&BBAE TXT GET M TABLE

Action Gets the address of a user-defined matrix table

Entry No entry conditions

Exit See TXT SET M TABLE above for details of the values that can be returned

&BBB1 TXT GET CONTROLS

Action Gets the address of the control code table

Entry No entry conditions

Exit HL contains the address of the table, and all others are preserved

Notes
The table has 32 entries, and each entry has three bytes
byte 1 is the number of parameters needed by the control code
bytes 2 and 3 are the address of the routine, in the Lower ROM, to execute the control code

&BBB4 TXT STR SELECT

The Amstrad CPC Firmware Guide 51

Action Selects a new VDU text stream

Entry A contains the value of the stream to change to

Exit A contains the previously selected stream, HL and the flags are corrupt, and all others are preserved

&BBB7 TXT SWAP STREAMS

Action Swaps the states of two stream attribute tables

Entry B contains a stream number, and C contains the other stream number

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

Notes The foreground pen and paper, the window size, the cursor position, the character write mode and
graphic character mode are all exchanged between the two streams

The Amstrad CPC Firmware Guide 52

The Amstrad CPC Firmware Guide 53

The Graphics VDU

&BBBA GRA INITIALISE

Action Initialises the graphics VDU to its default set-up (ie its set-up when the computer is switched on)

Entry No entry conditions

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

Notes
Sets the graphics indirections to their defaults, sets the graphic paper to text pen 0 and the graphic pen
to text pen 1, reset the graphics origin and move the graphics cursor to the bottom left of the screen,
reset the graphics window and write mode to their defaults

&BBBD GRA RESET

Action Resets the graphics VDU

Entry No entry conditions

Exit AF, BC, DE and HL are corrupt, and all others are preserved

Notes Resets the graphics indirections and the graphics write mode to their defaults

&BBC0 GRA MOVE ABSOLUTE

Action Moves the graphics cursor to an absolute screen position

Entry DE contains the user X-coordinate and HL holds the user Y-coordinate

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

&BBC3 GRA MOVE RELATIVE

Action Moves the graphics cursor to a point relative to its present screen position

Entry DE contains the X-distance to move and HL holds the Y-distance

Exit AF, BC, DE and HL are corrupt, and all others are preserved

&BBC6 GRA ASK CURSOR

Action Gets the graphics cursor's current position

Entry No entry conditions

Exit DE holds the user X-coordirlate, HL holds the user Y-coordinate, AF is corrupt, and all others nre
preserved

&BBC9 GRA SET ORIGIN

Action Sets the graphics user origin's screen position

Entry DE contains the standard X-coordinate and HL holds the standard Y-coordinate

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

&BBCC GRA GET ORIGIN

Action Gets the graphics user origin's screen position

Entry No entry conditions

Exit DE contains the standard X-coordinate and HL holds the standard Y-coordinate, and all others are
preserved

&BBCF GRA WIN WIDTH

Action Sets the left and right edges of the graphics window

Entry DE contains the standard X-coordinate of one edge and HL holds the standard X-coordinate of the
other side

Exit AF, BC, DE and HL are corrupt, and all the other registers are preserved

Notes The default window covers the entire screen and is restored to its default when the mode is changed;
used in conjunction with GRA WIN HEIGHT

&BBD2 GRA WIN HEIGHT

The Amstrad CPC Firmware Guide 54

Action Sets the top and bottom edges of the graphics window

Entry DE contains the standard Y-coordinate of one side and HL holds the standard Y-coordinate of the other
side

Exit AF, BC, DE and HL are corrupt, and all others are preserved

Notes See GRA WIN WIDTH for further details

&BBD5 GRA GET W WIDTH

Action Gets the left and right edges of the graphics window

Entry No entry conditions

Exit DE contains the standard X-coordinate of the left edge and HL contains the standard Y-coordinate of
the right edge, AF is corrupt, and all other registers are preserved

&BBD8 GRA GET W HEIGHT

Action Gets the top and bottom edges of the graphics window

Entry No entry conditions

Exit DE contains the standard Y-coordinate of the top edge and HL contains the standard Y-coordinate of
the bottom edge, AF is corrupt, and all other registers are preserved

&BBDB GRA CLEAR WINDOW

Action Clears the graphics window to the graphics paper colour and moves the cursor back to the user origin

Entry No entry conditions

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

&BBDE GRA SET PEN

Action Sets the graphics PEN

Entry A contains the required text PEN number

Exit AF is corrupt, and all other registers are preserved

&BBE1 GRA GET PEN

Action Gets the graphics PEN

Entry No entry conditions

Exit A contains the text PEN number, the flags are corrupt, and all other registers are preserved

&BBE4 GRA SET PAPER

Action Sets the graphics PAPER

Entry A contains the required text PEN number

Exit AF corrupt, and all others are preserved

&BBE7 GRA GET PAPER

Action Gets the graphics PAPER

Entry No entry conditions

Exit A contains the text PEN number, the flags are corrupt, and all others are preserved

&BBEA GRA PLOT ABSOLUTE

Action Plots a point at an absolute user coordinate, using the GRA PLOT indirection

Entry DE contains the user X-coordinate and HL holds the user Y-coordinate

Exit AF, BC, DE and HL are corrupt, and all others are preserved

&BBED GRA PLOT RELATIVE

Action Plots a point at a position relative to the current graphics cursor, using the GRA PLOT indirection

Entry DE contains the relative X-coordinate and HL contains the relative Y-coordinate

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

&BBF0 GRA TEST ABSOLUTE

The Amstrad CPC Firmware Guide 55

Action Moves to an absolute position, and tests the point there using the GRA TEST indirection

Entry DE contains the user X-coordinate and HL holds the user Y-coordinate for the point you wish to test

Exit A contains the pen at the point, and BC, DE, HL and flags are corrupt, and all others are preserved

&BBF3 GRA TEST RELATIVE

Action Moves to a position relative to the current position, and tests the point there using the GRA TEST
indirection

Entry DE contains the relative X-coordinate and HL contains the relative Y-coordinate

Exit A contains the pen at the point, and BC, DE, HL and flags are corrupt, and all others are preserved

&BBF6 GRA LlNE ABSOLUTE

Action Draws a line from the current graphics position to an absolute position, using GRA LINE

Entry DE contains the user X-coordinate and HL holds the user Y-coordinate of the end point

Exit AF, BC, DE and HL are corrupt, and all others are preserved

Notes The line will be plotted in the current graphics pen colour (may be masked to produce a dotted line on a
6128)

&BBF9 GRA LINE RELATIVE

Action Draws a line from the current graphics position to a relative screen position, using GRA LINE

Entry DE contains the relative X-coordinate and HL contains the relative Y-coordinate

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

Notes See GRA LINE ABSOLUTE above for details of how the line is plotted

&BBFC GRA WR CHAR

Action Writes a character onto the screen at the current graphics position

Entry A contains the character to be put onto the screen

Exit AF, BC, DE and HL are corrupt, and all the other registers are preserved

Notes
As in BASIC, all characters including control codes are printed; the character is printed with its top left
corner at the current graphics position; the graphics position is moved one character width to the right
so that it is ready for another character to be printed

The Amstrad CPC Firmware Guide 56

The Amstrad CPC Firmware Guide 57

The Screen Pack

&BBFF SCR INITIALISE

Action Initialises the Screen Pack to the default values used when the computer is first switched on

Entry No entry conditions

Exit AF, BC, DE and HL are corrupt, and all others are preserved

Notes
All screen indirections are restored to their default settings, as are inks and flashing speeds; the mode is
switched to MODE 1 and the screen is cleared with PEN 0; the screen address is moved to &C000 and
the screen offset is set to zero

&BC02 SCR RESET

Action Resets the Screen Pack's indirections, flashing speeds and inks to their default values

Entry No entry conditions

Exit AF, BC, DE r1nd HL are corrupt, and all other registers are preserved

&BC05 SCR SET OFFSET

Action Sets the screen offset to the specified values - this can cause the screen to scroll

Entry HL contains the required offset, which should be even

Exit AF and HL are corrupt, and alI others are preserved

Notes The screen offset is reset to 0 whenever its mode is set, or it is cleared by SCR CLEAR (but not
BASIC's CLS)

&BC08 SCR SET BASE

Action Sets the location in memory of the screen - effectively can only be &C000 or &4000

Entry A contains the most significant byte of the screen address required

Exit AF and HL are corrupt, and all other registers are preserved

Notes The screen memory can only be set at 16K intervals (ie &0000, &4000, &8000, &C000) and when the
computer is first switched on the 16K of screen memory is located at &C000)

&BC0B SCR GET LOCATION

Action Gets the location of the screen memory and also the screen offset

Entry No entry conditions

Exit A holds the most significant byte of the screen address, HL holds the current offset, and all others are
preserved

&BC0E SCR SET MODE

Action Sets the screen mode

Entry A contains the mode number - it has the same value and characteristics as in BASIC

Exit AF, BC, DE and HL are corrupt, and all others are preserved

Notes The windows are set to cover the whole screen and the graphics origin is set to the bottom left corner of
the screen; in addition, the current stream is set to zero, and the screen offset is zeroed

&BC11 SCR GET MODE

Action Gets the current screen mode

Ently No entry conditions

Exit
If the mode is 0, then Carry is true, Zero is false, and A contains 0; if the mode is 1, then Carry is false,
Zero is true, and A contains 1; if the mode is 2, then Carry is false, Zero is false, and A contains 2; in all
cases the other flags are corrupt and all the other registers are preserved

&BC14 SCR CLEAR

Action Clears the whole of the screen

Entry No entry conditions

The Amstrad CPC Firmware Guide 58

Exit AF, BC, DE and HL are corrupt, and all others are preserved

&BC17 SCR CHAR LIMITS

Action Gets the size of the whole screen in terms of the numbers of characters that can be displayed

Entry No entry conditions

Exit B contains the number of characters across the screen, C contains the number of characters down the
screen, AF is corrupt, and all other registers are preserved

&BC1A SCR CHAR POSITION

Action Gets the memory address of the top left corner of a specified character position

Entry H contains the character physical column and L contains the character physical row

Exit HL contains the memory address of the top left comer of the character, B holds the width in bytes of a
character in the present mode, AF is corrupt, and all other registers are preserved

&BC1D SCR DOT POSITION

Action Gets the memory address of a pixel at a specified screen position

Entry DE contains the base X-coordinate of the pixel, and HL contains the base Y-coordinate

Exit HL contains the memory address of the pixel, C contains the bit mask for this pixel, B contains the
number of pixels stored in a byte minus 1, AF and DE are corrupt, and all others are preserved

&BC20 SCR NEXT BYTE

Action Calculates the screen address of the byte to the right of the specified screen address (may be on the
next line)

Entry HL contains the screen address

Exit HL holds the screen address of the byte to the right of the original screen address, AF is corrupt, all
others are preserved

&BC23 SCR PREV BYTE

Action Calculates the screen address of the byte to the left of the specified screen address (this address may
actually be on the previous line)

Entry HL contains the screen address

Exit HL holds the screen address of the byte to the left of the original address, AF is corrupt, all others are
preserved

&BC26 SCR NEXT LINE

Action Calculates the screen address of the byte below the specified screen address

Entry HL contains the screen address

Exit HL contains the screen address of the byte below the original screen address, AF is corrupt, and all the
other registers are preserved

&BC29 SCR PREV LINE

Action Calculates the screen address of the byte above the specified screen address

Entry HL contains the screen address

Exit HL holds the screen address of the byte above the original address, AF is corrupt, and all others are
preserved

&BC2C SCR INK ENCODE

Action Converts a PEN to provide a mask which, if applied to a screen byte, will convert all of the pixels in the
byte to the appropriate PEN

Entry A contains a PEN number

Exit A contains the encoded value of the PEN, the flags are corrupt, and all other registers are preserved

Notes The mask returned is different in each of the screen modes

&BC2F SCR INK DECODE

Action Converts a PEN mask into the PEN number (see SCR INK ENCODE for the re~ erse process)

Entry A contains the encoded value of the PEN

The Amstrad CPC Firmware Guide 59

Exit A contains the PEN number, the flags are corrupt, and all others are preserved

&BC32 SCR SET INK

Action Sets the colours of a PEN - if the two values supplied are different then the colours will alternate (flash)

Entry contains the PEN number, B contains the first colour, and C holds the second colour

Exit AF, BC, DE and HL are corrupt, and all others are preserved

&BC35 SCR GET INK

Action Gets the colours of a PEN

Entry A contains the PEN nurnber

Exit B contains the first colour, C holds the second colour, and AF, DE and HL are corrupt, and all others are
preserved

&BC38 SCR SET BORDER

Action Sets the colours of the border - again if two different values are supplied, the border will flash

Entry B contains the first colour, and C contains the second colour

Exit AF, BC, DE and HL are corrupt, and all others are preserved

&BC3B SCR GET BORDER

Action Gets the colours of the border

Entry No entry conditions

Exit B contains the first colour, C holds the second colour, and AF, DE and HL are corrupt, and all others are
preserved

&BC3E SCR SET FLASHING

Action Sets the speed with which the border's and PENs' colours flash

Entry H holds the time that the first colour is displayed, L holds the time the second colour is displayed for

Exit AF and HL are corrupt, and all other registers are preserved

Notes The length of time that each colour is shown is measured in 1/5Oths of a second, and a value of 0 is
taken to mean 256 * 1/50 seconds - the default value is 10 * 1/50 seconds

&BC41 SCR GET FLASHING

Action Gets the periods with which the colours of the border and PENs flash

Entry No entry conditions

Exit H holds the duration of the first colour, L holds the duration of the second colour, AF is corrupt, and all
other registers are preserved - see SCR SET FLASHING for the units of time used

&BC44 SCR FILL BOX

Action Fills an area of the screen with an ink - this only works for `character-sized' blocks of screen

Entry
A contains the mask for the ink that is to be used, H contains the left hand colurnn of the area to fill, D
contains the right hand column, L holds the top line, and E holds the bottom line of the area (using
physical coordinates)

Exit AF, BC, DE and HL are corrupt, and all others are preserved

&BC17 SCR FLOOD BOX

Action Fills an area of the screen with an ink - this only works for `byte-sized' blocks of screen

Entry
C contains the encoded PEN that is to be used, HL contains the screen address of the top left hand
corner of the area to fill, D contains the width of the area to be filled in bytes, and E contains the height
of the area to be filled in screen lines

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

Notes The whole of the area to be filled must lie on the screen otherwise unpredictable results may occur

&BC4A SCR CHAR INVERT

Action Inverts a character's colours; all pixels in one PEN's colour are printed in another PEN's colour, and vice
versa

The Amstrad CPC Firmware Guide 60

Entry B contains one encoded PEN, C contains the other encoded PEN, H contains the physical column
number, and L contains the physical line number of the character that is to be inverted

Exit AF, BC, DE and HL are corrupt, and alI the other registers are preserved

&BC4D SCR HW ROLL

Action Scrolls the entire screen up or down by eight pixel rows (ie one character line)

Entry B holds the direction that the screen will roll, A holds the encoded PAPER which the new line will appear
in

Exit AF, BC, DE and HL are corrupt, and all others are preserved

Notes This alters the screen offset; to roll down, B must hold zero, and to roll upwards B must be non-zero

&BCS0 SCR SW ROLL

Action Scrolls part of the screen up or down by eight pixel lines - only for `character-sized' blocks of the screen

Entry
B holds the direction to roll the screen, A holds the encoded PAPER which the new line will appear in, H
holds the left column of the area to scroll, D holds the right colurnn, L holds the top line, E holds the
bottom line

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

Notes The area of the screen is moved by copying it; to roll down, B must hold zero, and to roll upwards B
must be non-zero; this routine uses physical roordinates

&BC53 SCR UNPACK

Action
Changes a character matrix from its eight byte standard form into a set of pixel masks which are suitable
for the current mode - four *8 bytes are needed in mode 0, two *8 bytes in mode l, and 8 bytes in mode
2

Entry HL contains the address of the matrix, and DE contains the address where the masks are to be stored

Exit AF. BC, DE and HL are corrupt, and all other registers are preserved

&BC56 SCR REPACK

Action Changes a set of pixel masks (for the current mode) into a standard eight byte character matrix

Entry
A contains the encoded foreground PEN to be matched against (ie the PEN that is to be regarded as
being set in the character), H holds the physical column of the character to be `repacked', L holds the
physical line of the character, and DE contains the address of the area where the character matrix will
be built

Exit AF, BC, DE amd HL are corrupt, and all the others are preserved

&BC59 SCR ACCESS

Action Sets the screen write mode for graphics

Entry A contains the write mode (0=Fill, 1=XOR, 2=AND, 3=OR)

Exit AF. BC, DE and HL are corrupt, amd all other registers are preserved

Notes
The fill mode means that the ink that plotting was requested in is the ink that appears on the screen; in
XOR mode, the specified ink is XORed with ink that is at that point on the screen already before plotting;
a simiIar situation occurs with the AND and OR modes

&BC5C SCR PIXELS

Action Puts a pixel or pixels on the screen regardless of the write mode specified by SCR ACCESS above

Entry B contains the mask of the PEN to be drawn with, C contains the pixel mask, and HL holds the screen
address of the pixel

Exit AF is corrupt, amd all others are preserved

&BC5F SCR HORIZONTAL

Action Draws a honzontal line on the screen using the current graphics write mode

Entry A contains the encoded PEN to be drawn with, DE contains the base X-coordinate of the start of the
line, BC contains the end base X-coordinate, and HL contains the base Y-coordinate

Exit AF, BC, DE and HL are conupt, and all other registers are preserved

Notes The start X-coordinate must be less than the end X- coordmate

The Amstrad CPC Firmware Guide 61

&BC62 SCR VERTICAL

Action Draws a vertical line on the screen using the current graphics write mode

Entry
A contains the encoded PEN to be drawn with, DE contains the base X-coordinate of the line, HL holds
the start base Y-coordinate, and BC contains the end base Y-coordinate - the start coordinate must be
less than the end coordinate

Exit AF, BC, DE and HL are corrupt, and all the other registers are preserved

The Amstrad CPC Firmware Guide 62

The Amstrad CPC Firmware Guide 63

The Cassette/AMSDOS manager

NOTE: Some of these routines are only applicable to the cassette manager; where a disc version
exists it is indicated by an asterisk (*) next to the command name. These disc version jumpblocks are
automatically installed by the Operating System on switch on.

&BC65 CAS INITIALISE

Action Initialises the cassette manager

Entry No entry conditions

Exit AF, BC, DE and HL are corrupt, and all the other registers are preserved

Notes Both read and write streams are closed; tape messages are switched on; the default speed is reselected

&BC68 CAS SET SPEED

Action Sets the speed at which the cassette manager saves programs

Entry HL holds the length of `half a zero' bit, and A contains the amount of precompensation

Exit AF and HL are corrupt

Notes
The value in HL is the length of time that half a zero bit is written as; a one bit is twice the length of a
zero bit; the default values (ie SPEED WRITE 0) are 333 microseconds (HL) and 25 microseconds (A)
for SPEED WRITE 1, the values are given as 107 microseconds and 50 microseconds respectiveIy

&BC6B CAS NOISY

Action Enables or disables the display of cassette handling messages

Entry To enable the messages then A must be 0, otherwise the messages are disabled

Exit AF is corrupt, and all other registers are preserved

&BC6E CAS START MOTOR

Action Switches on the tape motor

Entry No entry conditions

Exit If the motor operates properly then Carry is true; if ESC was pressed then Carry is false; in either case,
A contains the motor's previous state, tbe flags are corrupt, and all others are preserved

&BC71 CAS STOP MOTOR

Action Switches off the tape motor

Entry No entry conditions

Exit If the motor turns off then Carry is true; if ESC was pressed then Carry is false; in both cases, A holds
tbe motor's previous state, the other flags are corrupt, all others are preserved

&BC74 CAS RESTORE MOTOR

Action Resets the tape motor to its previous state

Entry A contains the previous state of the motor (eg from CAS START MOTOR or CAS STOP MOTOR)

Exit If the motor operates properly then Carry is true; if ESC was pressed then Carry is false; in all cases, A
and the other flags are corrupt and all others are preserved

&BC77 *CAS IN OPEN

Action Opens an input buffer and reads the first block of the file

Entry B contains the length of the filename, HL contains the filename's address, and DE contains the address
of the 2K buffer to use for reading the file

Exit

If the file was opened successfully, then Carry is true, Zero is false, HL holds the address of a buffer
contauling the file header data, DE holds the address of the destination for the file, BC holds the file
length, and A holds the file type; if the read stream is already open then Carry and Zero are false, A
contains an error nurnber (664/6128 only) and BC, DE and HL are corrupt; if ESC was pressed by the
user, then Carry is false, Zero is true, A holds an error number (664/6128 only) and BC, DE and HL are
corrupt; in all cases, IX and the other flags are corrupt, and the others are preserved

The Amstrad CPC Firmware Guide 64

Notes A filename of zero length means `read the neXt file on the tape'; the stream remains open until it is
closed by either CAS IN CLOSE or CAS IN ABANDON

Disc Similar to tape except that if there is no header on the file, then a fake header is put into memory by this
routine

&BC7A *CAS IN CLOSE

Action Closes an input file

Entry No entry conditions

Exit
If the file was closed successfully, then Carry is true and A is corrupt; if the read stream was not open,
then Carry is false, and A holds an error code (664/6128 only); in both cases, BC, DE, HL and the other
flags are all corrupt

Disc All the above applies, but also if the file failed to close for any other reason, then Carry is false, Zero is
true and A contains an error number; in all cases the drive motor is turned off immediately

&BC7D *CAS IN ABANDON

Action Abandons an input file

Entry No entry conditions

Exit AF, BC, DE and HL are corrupt, and all others are preserved

Disc All the above applies for the disc routine

&BC80 *CAS IN CHAR

Action Reads in a single byte from a file

Entry No entry conditions

Exit

If a byte was read, then Carry is true, Zero is false, and A contains the byte read from the file; if the end
of file was reached, then Carry and Zero are false, A contains an error number (664/6128 only) or is
corrupt (for the 464); if ESC was pressed, then Carry is false, Zero is true, and A holds an error number
(664/6128 only) or is corrupt (for the 464); in all cases, IX and the other flags are corrupt, and all others
are preserved

Disc All the above applies for the disc routine

&BC83 *CAS IN DIRECT

Action Reads an entire file directly into memory

Entry HL contains the address where the file is to be placed in RAM

Exit

If the operation was successful, then Carry is true, Zero is false, HL contains the entry address and A is
corrupt; if it was not open, then Carry and Zero are both false, HL is corrupt, and A holds an error code
(664/6128) or is corrupt (464); if ESC was pressed, Carry is false, Zero is true, HL is corrupt, and A
holds an error code (664/6128 only); in all cases, BC, DE and IX and the other flags are corrupt, and the
others are preserved

Notes This routine cannot be used once CAS IN CHAR has been used

Disc All the above applies to the disc routine

&BC86 *CAS RETURN

Action Puts the last byte read back into the input buffer so that it can be read again at a later time

Entry No entry conditions

Exit All registers are preserved

Notes The routine can only return the last byte read and at least one byte must have been read

Disc All the above applies to the disc routine

&BC89 *CAS TEST EOF

Action Tests whether the end of file has been encountered

Entry No entry conditions

Exit
If the end of file has been reached, then Carry and Zero are false, and A is corrupt; if the end of file has
not been encountered, then Carry is true, Zero is false, and A is corrupt; if ESC was pressed then Carry
is false, Zero is true and A contains an error number (664/6128 only); in all cases, IX and the other flags

The Amstrad CPC Firmware Guide 65

are corrupt, and all others are preserved

Disc All the above applies to the disc routine

&BC8C *CAS OUT OPEN

Action Opens an output file

Entry B contains the length of the filename, HL contains the address of the filename, and DE holds the
address of the 2K buffer to be used

Exit

If the file was opened correctly, then Carry is true, Zero is false, HL holds the address of the buffer
containing the file header data that will be written to each block, and A is corrupt; if the write stream is
already open, then Carry and Zero are false, A holds an error nurnber (66~/6128) and HL is corrupt; if
ESC was pressed then Carry is false, Zero is true, A holds an error number (664/6128) and HL is
corrupt; in all cases, BC, DE, IX and the other flags are corrupt, and the others are preserved

Notes The buffer is used to store the contents of a file block before it is actually written to tape

Disc The same as for tape except that the filename must be present in its usual AMSDOS format

&BC8F *CAS OUT CLOSE

Action Closes an output file

Entry No entry conditions

Exit
If the file was closed successfully, then Carry is true, Zero is false, and A is corrupt; if the write stream
was not open, then Carry and Zero are false and A holds an error code (664/6128 only); if ESC was
pressed then Carry is false, Zero is true, and A contains an error code (664/6128 only); in all cases, BC,
DE, HL, IX and the other flags are all corrupt

Notes The last block of a file is written only when this routine is called; if writing the file is to be abandoned,
then CAS OUT ABANDON should be used instead

Disc All the above applies to the disc routine

&BC92 *CAS OUT ABANDON

Action Abandons an output file

Entry No entry conditions

Exit AF, BC, DE and HL are corrupt, and all others are preserved

Notes When using this routine, the current last block of the file is not written to the tape

Disc
Similar to the tape routine; if more than 16K of a file has been written to the disc, then the first 16K of the
file will exist on the disc with a file extension of .$$$ because each 16K section of the file requires a
separate directory entry

&BC95 *CAS OUT CHAR

Action Writes a single byte to a file

Entry A contains the byte to be written to the file output buffer

Exit

If a byte was written to the buffer, then Carry is true, Zero is false, and A is corrupt; if the file was not
open, then Carry and Zero are false, and A contains an error number (664/6128 only) or is corrupt (on
the 464); if ESC was pressed, then Carry is false, Zero is true, and A contains an error number
(664/6128 only) or it is corrupt (on the 464); in all cases, IX and the other flags are corrupt, and all
others are preserved

Notes
If the 2K buffer is full of data then it is written to the tape before the new character is placed in the buffer;
it is important to call CAS OUT CLOSE when all the data has been sent to the file so that the last block
is written to the tape

Disc All the above applies to the disc routine

&BC98 *CAS OUT DIRECT

Action Writes an entire file directly to tape

Entry HL contains the address of the data which is to be written to tape, DE contains the length of this data,
BC contains the e~ecution address, and A contains the file type

Exit
If the operation was successful, then Carry is true, Zero is false, and A is corrupt; if the file was not
open, Carry and Zero are false, A holds an error number (664/6128) or is corrupt (464); if ESC was
pressed, then Carry is false, Zero is true, and A holds an error code (664/6128 only); in all cases BC,
DE, HL, IX and the other flags are corrupt, and the others are preserved

The Amstrad CPC Firmware Guide 66

Notes This routine cannot be used once CAS OUT CHAR has been used

Disc All the above applies to the disc routine

&BC9B *CAS CATALOG

Action Creates a catalogue of all the files on the tape

Entry DE contains the address of the 2K buffer to be used to store the information

Exit
If the operation was successful, then Carry is true, Zero is false, and A is corrupt; if the read stream is
already being used, then Carry and Zero are false, and A holds an error code (664/6128 or is corrupt
(for the 464); in all cases, BC, DE, HL, IX and the other flags are corrupt and all others are preserved

Notes This routine is only left when the ESC key is pressed (cassette only) and is identical to BASIC's CAT
command

Disc All tbe above applies, except that a sorted list of files is displayed; system files are not listed by this
routine

&BC9E CAS WRITE

Action Writes data to the tape in one long file (ie not in 2K blocks)

Entry HL contains the address of the data to be written to tape, DE contains the length of the data to be
written, and A contains the sync character

Exit
If the operation was successful, then Carry is true and A is corrupt; if an error occurred then Carry is
false and A contains an error code; in both cases, BC, DE, HL and lX are corrupt, and all other registers
are preserved

Notes For header records the sync character is &2C, and for data it is &16; this routine starts and stops the
cassette motor and also tums off interrupts whilst writing data

&BCA1 CAS READ

Action Reads data from the tape in one long file (ie as originally written by CAS WRITE only)

Entry HL holds the address to place the file, DE holds the length of the data, and A holds the expected sync
character

Exit
If the operation was successful, then Carry is true and A is corrupt; if an error occurred then Carry is
false and A contains an error code; in both cases, BC, DE, HL and IX are corrupt, and all other registers
are preserved

Notes For header records the sync character is &2C, and for data it is &16; this routine starts and stops the
cassette motor and turns off interrupts whilst reading data

&BCA4 CAS CHECK

Action Compares the contents of memory with a file record (ie header or data) on tape

Entry HL contains the address of the data to check, DE contains the length of the data and A holds the sync
character that was used when the file was originally written to the tape

Exit
If the two are identical, then Carry is true and A is corrupt; if an error occurred then Carry is false and A
holds an error code; in all cases, BC, DE, HL, IX and other flags are corrupt, and all other registers are
preserved

Notes
For header records the sync character is &2C, and for data it is &16; this routine starts and stops the
cassette motor and turns off interrupts whilst reading data; does not have to read the whole of a record,
but must start at the beginning

AMSDOS and BIOS Firmware

&C033 BIOS SET MESSAGE

Action Enables or disables disc error messages

Entry To enable messages, A holds &00; to disable messages, A holds &FF

Exit A holds the previous state, HL and the flags are corrupt, and all others are preserved

Notes Enabling and disabling the messages can also be achieved by poking &BE78 with &00 or &FF

&C036 BIOS SETUP DISC

The Amstrad CPC Firmware Guide 67

Action Sets the parameters which effect the disc speed

Entry HL holds the address of the nine bytes which make up the parameter block

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

Notes

The parameter block is arranged as follows
bytes 0&1 - the motor on time in 20ms units; the default is &0032; the fastest is &0023
bytes 2&3 - the motor off time in 20ms units; the default is &00FA; the fastest is &00C8
byte 4 - the write off time in l0æs units; the default is &AF; should not be changed
byte 5 - the head settle time in 1ms units; the default is &0F; should not be changed
byte 6 - the step rate time in 1ms units; the default is &0C; the fastest is &0A
byte 7 - the head unload delay; the default is &01; should not be changed
byte 8 - a byte of &03 and this should be left unaltered

&C039 BIOS SELECT FORMAT

Action Sets a format for a disc

Entry A holds the type of format that is to be selected

Exit AF, BC, DE and HL are corrupt, and all the other registers are preserved

Notes

To select one of the normal disc formats, the following values should be put into the A register
Data format - &C1
System format - &41 - Used by CP/M
IBM format - &01 - compatible with CP/M-86
This routine sets the extended disc parameter block (XDPB) at &A890 to &A8A8 - to set other formats,
the XDPB must be altered directly

&C03C BIOS READ SECTOR

Action Reads a sector from a disc into memory

Entry HL holds the address in memory where the sector will be read to, E holds the drive number (&00 for
drive A, and &01 for drive B), D holds the track number, and C holds the sector number

Exit
If the sector was read properly, then Carry is true, A holds 0, and HL is preserved; if the read failed, then
Carry is false, A holds an error number, and HL is corrupt; in either case, the other flags are corrupt, and
all other registers are preserved

&C03F BIOS WRITE SECTOR

Action Writes a sector from memory onto disc

Entry HL holds the address of memory which will be written to the disc, E holds the drive number (&00 for
drive A, and &01 for drive B), D holds the track number, and C holds the sector number

Exit
If the sector was written properly, then Carry is true, A holds 0, and HL is preserved; if the write failed,
then Carry is false, A holds an error number, and HL is corrupt; in either case, the other flags are
corrupt, and all other registers are preserved

&C042 BIOS FORMAT TRACK

Action Formats a complete track, inserts sectors, and fills the track with bytes of &E5

Entry HL contains the address of the header information buffer which holds the header information blocks, E
contains the drive number (&00 for drive A, and &01 for drive B), and D holds the track number

Exit
if the formatting process was successful, then Carry is true, A holds 0, and HL is preserved; if the
formatting process failed, then Carry is false, A holds an error number, and HL is corrupt; in either case,
the other flags are corrupt, and all the other registers are preserved

Notes

The header information block is laid out as follows
byte 0 - holds the track number
byte 1 - holds the head number (set to zero)
byte 2 - holds the sector number
byte 3 - holds log2(sector size) -7 (usually either &02=512 bytes, or &03=1024 bytes).
Header information blocks must be set up contiguously for every sector on the track, and in the same
sequence that they are to be laid down (eg &C1, &C6, &C2, &C7, &C3, &C8, &C4, &C9, &C5)

&C045 BIOS MOVE TRACK

Action Moves the disc drive head to the specified track

Entry E holds the drive number (&00 for drive A, and &01 for drive B), and D holds the track number

Exit If the head was moved successfully, then Carry is true, A holds 0, and HL is preserved; if the move
failed, then Carry is false, A holds an error number, and HL is corrupt; in both cases, the other flags are

The Amstrad CPC Firmware Guide 68

corrupt, and all other registers are preserved

Notes There is normally no need to call this routine as READ SECTOR, WRITE SECTOR and FORMAT
TRACK automatically move the head to the correct position

&C048 BIOS GET STATUS

Action Returns the status of the specified drive

Entry A holds the drive number (&00 for drive A, and &01 for drive B)

Exit
If Carry is true, then A holds the status byte, and HL is preserved; if Carry is false, then A is corrupt, and
HL holds the address of the byte before the status byte; in either case, the other flags are preserved,
and all other registers are preserved

Notes
The status byte indicates the drive's status as follows
if bit 6 is set, then either the write protect is set or the disc is missing
if bit 5 is set, then the drive is ready and the disc is fitted (whether the disc is formatted or not)
if bit 4 is set, then the head is at track 0

&C04B BIOS SET RETRY COUNT

Action Sets the number of times the operation is retried in the event of disc error

Entry A holds the number of retries required

Exit A holds the previous number of retries, HL and the flags are corrupt, and all others are preserved

Notes The default setting is &10, and the minimum setting is &01; the number of retries can also be altered by
poking &BE66 with the required value

&C56C GET SECTOR DATA

Action Gets the data of a sector on the current track

Entry E holds the drive number

Exit
If a formatted disc is present, then Carry is true, and HL is preserved; if an unforrnatted disc is present or
the disc is missing, then Carry is false, and HL holds the address of the byte before the status byte; in
either case, A and the other flags are corrupt, and all other registers are preserved

Notes
The track number is held at &BE4F, the head number is held at &BE50, the sector number is held at
&BE51, and the log2(sector size)-7 is held at &BE52; disc parameters do not need to be set to the
format of the disc; this routine is best used with the disc error messages turned off

The Amstrad CPC Firmware Guide 69

The Sound Manager

&BCA7 SOUND RESET

Action Resets the sound manager by clearing the sound queues and abandoning any current sounds

Entry No entry conditions

Exit AF, BC, DE and HL are corrupt, and all others are preserved

&BCAA SOUND QUEUE

Action Adds a sound to the sound queue of a channel

Entry HL contains the address of a series of bytes which define the sound and are stored in the central 32K of
RAM

Exit
If the sound was successfully added to the queue, then Carry is true and HL is corrupt; if one of the
sound queues was full, then Carry is false and HL is preserved; in either case, A, BC, DE, IX and the
other flags are corrupt, and all others are preserved

Notes

The bytes required to define the sound are as follows
byte 0 - channel status byte
byte 1 - volume envelope to use
byte 2 - tone envelope to use
bytes 3&4 - tone period
byte 5 - noise period
byte 6 - start volume
bytes 7&8 - duration of the sound, or envelope repeat count

&BCAD SOUND CHECK

Action Gets the status of a sound channel

Entry A contains the channel to test - for channel A, bit 0 set; for channel B, bit 1 set; for channel C, bit 2 set

Exit A contains the channel status, BC, DE, HL and flags are corrupt, and all others are preserved

Notes

The channel status returned is bit significant, as follows
bits 0 to 2 - the number of free spaces in the sound queue
bit 3 - trying to rendezvous with channel A
bit 4 - trying to rendezvous with channel B
bit 5 - trying to rendezvous with channel C
bit 6 - holding the channel
bit 7 - producing a sound

&BCB0 SOUND ARM EVENT

Action Sets up an event which will be activated when a space occurs in a sound queue

Entry A contains the channel to set the event up for (see SOUND CHECK for the bit values this can take),
and HL holds the address of the event block

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

Notes The event block must be initialised by KL INIT EVENT and is disarmed when the event itself is run

&BCB3 SOUND RELEASE

Action Allows the playing of sounds on specific channels that had been stopped by SOUND HOLD

Entry A contains the sound channels to be released (see SOUND CHECK for the bit values this can take)

Exit AF, BC, DE, HL and IX are corrupt, and all others are preserved

&BCB6 SOUND HOLD

Action Immediately stops all sound output (on all channels)

Entry No entry conditions

Exit If a sound was being made, then Carry is true; if no sound was being made, then Carry is false; in all
cases, A, BC, HL and other flags are corrupt, and all others are preserved

Notes When the sounds are restarted, they will begin from exactly the same place that they were stopped

&BCB9 SOUND CONTINUE

The Amstrad CPC Firmware Guide 70

Action Restarts all sound output (on all channels)

Entry No entry conditions

Exit AF, BC, DE and IX are corrupt, and all others are preserved

&BCBC SOUND AMPL ENVELOPE

Action Sets up avolume envelope

Entry A holds an envelope number (from 1 to 15), HL holds the address of a block of data for the envelope

Exit
If it was set up properly, Carry is true, HL holds the data block address + 16, A and BC are corrupt; if
the envelope number is invalid, then Carry is false, and A, B and HL are preserved; in either case, DE
and the other flags are corrupt, and all other registers are preserved

Notes

All the rules of enevelopes in BASIC also apply; the block of the data for the envelope is set up as
follows
byte 0 - number of sections in the envelope
bytes 1 to 3 - first section of the envelope
bytes 4 to 6 - second section of the envelope
bytes 7 to 9 - third section of the envelope
bytes 10 to 12 - fourth section of the envelope
bytes 13 to 15 - fifth section of the envelope
Each section of the envelope has three bytes set out as follows
byte 0 - step count (with bit 7 set)
byte 1 - step size
byte 2 - pause time or if it is a hardware envelope, then each section takes the following form
byte 0 - envelope shape (with bit 7 not set)
bytes 1 and 2 - envelope period
See also SOUND TONE ENVELOPE below

&BCBF SOUND TONE ENVELOPE

Action Sets up a tone envelope

Entry A holds an envelope number (from 1 to 15), HL holds the address of a block of data for the envelope

Exit
If it was set up properly, Carry is true, HL holds the data block address + 16, A and BC are corrupt; ¡ if
the envelope number is invalid, then Carry is false, and A, B and HL are preserved; in either case, DE
and the other flags are corrupt, and all other registers are preserved

Notes

All the rules of envelopes in BASIC also apply; the block of the data for the envelope is set up as follows
byte 0 - number of sections in the envelope
bytes 1 to 3 - first section of the envelope
bytes 4 to 6 - second section of the envelope
bytes 7 to 9 - third section of the envelope
bytes 10 to 12 - fourth section of the envelope
bytes 13 to 15 - fifth section of the envelope
Each section of the envelope has three bytes set out as follows
byte 0 - step count
byte 1 - step size
byte 2 - pause time
See also SOUND AMPL ENVELOPE above

&BCC2 SOUND A ADDRESS

Action Gets the address of the data block associated with a volume envelope

Entry A contains an envelope number (from 1 to 15)

Exit
If it was found, then Carry is true, HL holds the data block's address, and BC holds its length; if the
envelope number is invalid, then Carry is false, HL is corrupt and BC is preserved; in both cases, A and
the other flags are corrupt, and all others are preserved

&BCC5 SOUND T ADDRESS

Action Gets the address of the data block associated with a tone envelope

Entry A contains an envelope number (from 1 to 15)

Exit
If it was found, then Carry is true, HL holds the data block's address, and BC holds its length; if the
envelope number is invalid, then Carry is false, HL is corrupt and BC is preserved; in both cases, A and
the other flags are corrupt, and all others are preserved

The Amstrad CPC Firmware Guide 71

The Machine Pack

&BD13 MC BOOT PROGRAM

Action Loads a program into RAM and then executes it

Entry HL contains the address of the routine which is used to load the program

Exit Control is handed over to the program and so the routine is not returned from

Notes

All events, sounds and interrupts are turned off, the firmware indirections are returned to their default
settings, and the stack is reset; the routine to run the program should be in the central block of memory,
and should obey the following exit conditions:
if the program was loaded successfully, then Carry is true, and HL contains the prograrn entry point; if
the program failed to load, then Carry is false, and HL is corrupt; in either case, A, BC, DE, IX, IY and
the other flags are all corrupt Should the program fail to load, control is returned to the previous
foreground program

&BD16 MC START PROGRAM

Action Runs a foreground program

Entry HL contains the entry point for the program, and C contains the ROM selection number

Exit Control is handed over to the prograrn and so the routine is not returned from

&BD19 MC WAIT FLYBACK

Action Waits until a frame flyback occurs

Entry No entry conditions

Exit All registers are preserved

Notes When the frame flyback occurs the screen is not being written to and so the screen c~n be manipulated
during this period without any flickering or ghosting on the screen

&BD1C MC SET MODE

Action Sets the screen mode

Entry A contains the required mode

Exit AF is corrupt, and all other registers are preserved

Notes
Although this routine changes the screen mode it does not inform the routines which write to the screen
that the mode has been changed; therefore these routines will write to the screen as if the mode had not
been changed; however as the hardware is now interpreting these signals differently, unusual effects
may occur

&BD1F MC SCREEN OFFSET

Action Sets the screen offset

Entry A contains the screen base, and HL contains the screen offset

Exit AF is corrupt, and all other registers are preserved

Notes
As with MC SET MODE, this routine changes the hardware setting without telling the routines that write
to the screen; therefore these routines may cause unpredictable effects if called; the default screen base
is &C0

&BD22 MC CLEAR INKS

Action Sets all the PENs and the border to one colour, so making it seem as if the screen has been cleared

Entry DE contains the address of the ink vector

Exit AF is corrupt, and all other registers are preserved

Notes
The ink vector takes the following form:
byte 0 - holds the colour for the border
byte 1 - holds the colour for all of the PENs
The values for the colours are all given as hardware values

&BD25 MC SET INKS

Action Sets the colours of all the PENs and the border

The Amstrad CPC Firmware Guide 72

Entry DE contains the address of the ink vector

Exit AF is corrupt, and all other registers are preserved

Notes
The ink vector takes the following form:
byte 0 - holds the colour for the border
byte 1 - holds the colour for PEN 0... byte 16 - holds the colour for PEN 15. The values for the colours
are all given as hardware values; the routine sets all sixteen PEN's

&BD28 MC RESET PRINTER

Action Sets the MC WAIT PRINTER indirection to its original routine

Entry No entry conditions

Exit AF, BC, DE and HL are corrupt, and all others are preserved

&BD2B MC PRINT CHAR

Action Sends a character to the printer and detects if it is busy for too long (more than 0.4 seconds)

Entry A contains the character to be printed - only characters upto ASCII 127 can be printed

Exit If the character was sent properly, then Carry is true; if the printer was busy, then Carry is false; in either
case, A and the other flags are corrupt, and all other registers are preserved

Notes This routine uses the MC WAIT PRINTER indirection

&BD2E MC BUSY PRINTER

Action Tests to see if the printer is busy

Entry No entry conditions

Exit If the printer is busy, then Carry is true; if the printer is not busy, then Carry is false; in both cases, the
other flags are corrupt, and all other registers are preserved

&BD31 MC SEND PRINTER

Action Sends a character to the printer, which must not be busy

Entry A contains tlle character to be printed - only characters up to ASCII 127 can be printed

Exit Carry is true, A and the other flags are corrupt, and all other registers are preserved

&BD34 MC SOUND REGISTER

Action Sends data to a sound chip register

Entry A contains the register nurnber, and C contains the data to be sent

Exit AF and BC are corrupt, and all other registers are preserved

&BD37 JUMP RESTORE

Action Restores the jumpblock to its default state

Entry No entry conditions

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

Notes This routine does not affect the indirections jumpblock, but restores all entries in the main jumpblock

The Amstrad CPC Firmware Guide 73

664 and 6128 only

&BD3A KM SET LOCKS

Action Turns the shift and caps locks on and off

Entry H contains the caps lock state, and L contains the shift lock state

Exit AF is corrupt, and all others are preserved

Notes In this routine, &00 means turned off, and &FF means turned on

&BD3D KM FLUSH

Action Empties the key buffer

Entry No entry conditions

Exit AF is corrupt, and all other registers are preserved

Notes This routine also discards any current expansion string

&BD40 TXT ASK STATE

Action Gets the VDU and cursor state

Entry No entry conditions

Exit A contains the VDU and cursor state, the flags are corrupt, and all others are preserved

Notes
The value in the A register is bit significant, as follows:
if bit 0 is set, then the cursor is disabled, otherwise it is enabled
if bit 1 is set, then the cursor is turned off, otherwise it is on
if bit 7 is set, then the VDU is enabled, otherwise it is disabled

&BD43 GRA DEFAULT

Action Sets the graphics VDU to its default mode

Entry No entry conditions

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

Notes Sets the background to opaque, the first point of line is plotted, lines aren't dotted, and the write mode is
force

&BD46 GRA SET BACK

Action Sets the graphics background mode to either opaque or transparent

Entry A holds zero if opaque mode is wanted, or holds &FF to select transparent mode

Exit All registers are preserved

&BD49 GRA SET FIRST

Action Sets whether the first point of a line is plotted or not

Entry A holds zero if the first point is not to be plotted, or holds &FF if it is to be plotted

Exit All registers are preserved

&BD4C GRA SET LINE MASK

Action Sets how the points in a line are plotted - ie defines whether a line is dotted or not

Entry A contains the line mask that will be used when drawing lines

Exit All registers are preserved

Notes The first point in the line corresponds to bit 7 of the line mask and after bit 0 the mask repeats; if a bit is
set then that point will be plotted; the mask is always applied from left to right, or from bottom to top

&BD4F GRA FROM USER

Action Converts user coordinates into base coordinates

Entry DE contains the user X coordinate, and HL contains the user Y coordinate

Exit DE holds the base X coordinate, and HL holds the base Y coordinate, AF is corrupt, and all others are

The Amstrad CPC Firmware Guide 74

preserved

&BD52 GRA FILL

Action Fills an area of the screen starting from the current graphics position and extending until it reaches
either the edge of the window or a pixel set to the PEN

Entry A holds a PEN to fill with, HL holds the address of the buffer, and DE holds the length of the buffer

Exit If the area was filled properly, then Carry is true; if the area was not filled, then Carry is false; in either
case, A, BC, DE, HL and the other flags are corrupt, and all others are preserved

Notes
The buffer is used to store complex areas to fill, which are remembered and filled when the basic shape
has been done; each entry in the buffer uses seven bytes and so the more complex the shape the larger
the buffer; if it runs out of space to store these complex areas, it will fill what it can and then return with
Carry false

&BD55 SCR SET POSITION

Action Sets the screen base and offset without telling the hardware

Entry A contains the screen base, and HL contains the screen offset

Exit A contains the masked screen base, and HL contains the masked screen offset, the flags are corrupt,
and all other registers are preserved

&BD58 MC PRINT TRANSLATION

Action Sets how ASCII characters will be translated before being sent to the printer

Entry HL contains the address of the table

Exit If the table is too long, then Carry is false (ie more than 20 entries); if the table is correctly set out, then
Carry is true; in either case, A, BC, DE, HL and the other flags are corrupt, and all others are preserved

Notes
The first byte in the table is the number of entries; each entry requires two bytes, as follows:
byte 0 - the character to be translated byte 1 - the character that is to be sent to the printer If the
character to be sent to the printer is &FF, then the character is ignored and nothing is sent

&BD5B KL BANK SWITCH (6128 only)

Action Sets which RAM banks are being accessed by the Z80

Entry A contains the organisation that is to be used

Exit A contains the previous organisation, the flags are corrupt, and all other registers are preserved

The Amstrad CPC Firmware Guide 75

The Firmware Indirections

&BDCD TXT DRAW CURSOR

Action Places the cursor on the screen, if the cursor is enabled

Entry No entry conditions

Exit AF is corrupt, and all other registers are preserved

Notes The cursor is an inverse blob which appears at the current text position

&BDD0 TXT UNDRAW CURSOR

Action Removes the cursor from the screen, if the cursor is enabled

Entry No entry conditions

Exit AF is corrupt, and all the other registers are preserved

&BDD3 TXT WRITE CHAR

Action Writes a character onto the screen

Entry A holds the character to be wntten, H holds the physical column number, and L holds the physical line
number

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

&BDD6 TXT UNWRITE

Action Reads a character from the screen

Entry H contains the physical column number, and L contains the physical line number to read from

Exit
If a character was found, then Carry is true, and A contains the character; if no character was found,
then Carry is false, and A contains zero; in either case, BC, DE, HL and the other nags are corrupt, and
all other registers are preserved

Notes This routine works by comparing the image on the screen with the character matrices; therefore if the
character matrices have been altered the routine may not find a readable a character

&BDD9 TXT OUT ACTION

Action Writes a character to the screen or obeys a control code (&00 to &1F)

Entry A contains the character or code

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

Notes
Control codes may take a maximum of nine parameters; when a control code is found, the required
number of parameters is read into the control code buffer, and then the control code is acted upon; if
the graphics character wnte mode is enabled, then characters and codes are printed using the graphics
VDU; when using the graphics VDU control codes are printed and not obeyed

&BDDC GRA PLOT

Action Plots a point in the current graphics PEN

Entry DE contains the user X coordinate, and HL contains the user Y coordinate of the point

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

Notes This routine uses the SCR WRITE indirection to write the point to the screen

&BDDF GRA TEST

Action Tests a point and finds out what PEN it is set to

Entry DE contains the user X coordinate, and HL contains the user Y coordinate of the point

Exit A contains the PEN that the point is written in, BC, DE and HL are corrupt, and all others are preserved

Notes This routine uses the SCR READ indirection to test a point on the screen

&BDE2 GRA LINE

Action Draws a line in the current graphics PEN, from the current graphics position to the specified point

The Amstrad CPC Firmware Guide 76

Entry DE contains the user X coordinate, and HL contains the user Y coordinate for the endpoint

Exit AF, BC, DE and HL are corrupt, and all others are preserved

Notes This routine uses the SCR WRITE indirection to write the points of the line on the screen

&BDE5 SCR READ

Action Reads a pixel from the screen and returns its decode a PEN

Entry HL contains the screen address of the pixel, and C contains the mask for the pixel

Exit A contains the decoded PEN of the pixel, the flags are corrupt, and all others are preserved

Notes The mask should be for a single pixel, and is dependent on the screen mode

&BDE8 SCR WRITE

Action Writes one or more pixels to the screen

Entry HL contains the screen address of the pixel, C contains the mask, and B contains the encoded PEN

Exit AF is corrupt, and all other registers are preserved

Notes The mask should determine which pixels in the screen byte are to be plotted

&BDEB SCR MODE CLEAR

Action Fills the entire screen memory with &00, which clears the screen to PEN 0

Entry No entry conditions

Exit AF, BC, DE and HL are corrupt, and all the other registers are preserved

&BDEE KM TEST BREAK

Action Tests if the ESC key has been pressed, and acts accordingly

Entry C contains the Shift and Control key states, and interrupts must be disabled

Exit AF and HL are corrupt, and all other registers are preserved

Notes
If bit 7 of C is set, then the Control key is pressed; if bit 5 of C is set, then the Shift key is pressed; if
ESC, Shift and Control are pressed at the sarne time, then it initiates a system reset; otherwise it
reports a break event

&BDF1 MC WAIT PRINTER

Action Sends a character to the printer if it is not busy

Entry A contains the character to be sent to the printer

Exit
If the character was printed successfully, then Carry is true; if the printer was busy for too long (more
than 0.4 seconds), then Carry is false; in either case, A and BC are corrupt, and all other registers are
preserved

&BDF4 KM SCAN KEYS

Action Scans the keyboard every 1/50th of a second, and updates the status of all keys

Entry All interrupts must be disabled

Exit AF, BC, DE and HL are corrupt, and all other registers are preserved

The Amstrad CPC Firmware Guide 77

The Maths Firmware

&BDC1 MOVE REAL (&BD3D for the 464)

Action Copies the five bytes that are pointed to by DE to the location held in HL

Entry DE points to the source real value, and HL points to the destination

Exit HL points to the real value in the destination, Carry is true if the move went properly, F is corrupt, and all
other registers are preserved

Notes For the 464 only, A holds the exponent byte of the real value when the routine is exited

&BD64 INTEGER TO REAL (&BD40 for the 464)

Action Converts an integer value into a real value

Entry HL holds the integer value, DE points to the desti- nation for the real value, bit 7 of A holds the sign of
the integer value - it is taken to be negative if bit 7 is set

Exit HL points to the real value in the destination, AF and DE are corrupt, and all others are preserved

&BD67 BINARY TO REAL (&BD43 for the 464)

Action Converts a four byte binary value into a real value at the same location

Entry HL points to the binary value, bit 7 of A holds the sign of the binary value - negative if it is set

Exit HL points to the real value in lieu of the four byte binary value, AF is corrupt, and all others are
preserved

Notes A four byte binary value is an unsigned integer up to &FFFFFFFF and is stored with the least significant
byte first, and with the most significant byte last

&BD6A REAL TO INTEGER (&BD46 for the 464)

Action Converts a real value, rounding it into an unsigned integer value held in HL

Entry HL points to the real value

Exit
HL holds the integer value, Carry is true if the conversion worked successfully, the Sign flag holds the
sign of the integer (negative if it is set). A, IX and the other flags are corrupt, and all other registers are
preserved

Notes This rounds the decimal part down if it is less than 0.5, but rounds up if it is greater than, or equal to 0.5

&BD6D REAL TO BINARY (&BD49 for the 464)

Action Converts a real value, rounding it into a four byte binary value at the same location

Entry HL points to the real value

Exit HL points to the binary value in lieu of the real value, bit 7 of B holds the sign for the binary value (it is
negative if bit 7 is set), AF, B and IX are corrupt, and all other registers are preserved

Notes See REAL TO INTEGER for details of how the values are rounded up or down

&BD70 REAL FIX (&BD4C for the 464)

Action Performs an equivalent of BASIC's FIX function on a real value, leaving the result as a four byte binary
value at the same location

Entry HL points to the real value

Exit HL points to the binary value in lieu of the real value, bit 7 of B has the sign of the binary value (it is
negative if bit 7 is set), AF, B and IX are corrupt, and all others are preserved

Notes FIX removes any decimal part of the value, rounding down whether positive or negative - see the
BASIC handbook for more details on the FIX command

&BD73 REAL INT (&BD4F for the 464)

Action Performs an equivalent of BASIC's INT function on a real value, leaving the result as a four byte binary
value at the same location

Entry HL points to the real value

Exit HL points to the binary value in lieu of the real value, bit 7 of B has the sign of the binary value (it is

The Amstrad CPC Firmware Guide 78

negative if bit 7 is set), AF, B and IX are corrupt, and all others are preserved

Notes INT removes any decimal part of the value, rounding down if the nurnber is positive, but rounding up if it
is negative

&BD76 INTERNAL SUBROUTINE - not useful (&BD52 for the 464)

&BD79 REAL *10^A (&BD55 for the 464)

Action Multiplies a real value by 10 to the power of the value in the A register, leaving the result at the same
location

Entry HL points to the real value, and A holds the power of 10

Exit HL points to the result, AF, BC, DE, IX and IY are corrupt

&BD7C REAL ADDITION (&BD58 for the 464)

Action Adds two real values, and leaves the result in lieu of the first real number

Entry HL points to the first real value, and DE points to the second real value

Exit HL points to the result, AF, BC, DE, IX and IY are corrupt

&BD82 REAL REVERSE SUBTRACTION (&BD5E for the 464)

Action Subtracts the first real value from the second real value, and leaves the result in lieu of the first number

Entry HL points to the first real value, and DE points to the second real value

Exit HL points to the result in place of the first real value, AF, BC, DE, IX and IY are corrupt

&BD85 REAL MULTIPLICATION (&BD61 for the 464)

Action Multiplies two real values together, and leaves the result in lieu of the first number

Entry HL points to the first real value, and DE points to the second real value

Exit HL points to the result in place of the first real value, AF, BC, DE, IX and IY are corrupt

&BD88 REAL DIVISION (&BD64 for the 464)

Action Divides the first real value by the second real value, and leaves the result in lieu of the first number

Entry HL points to the first real value, and DE points to the second real value

Exit HL points to the result in place of the first real value, AF, BC, DE, IX and IY are corrupt

&BD8E REAL COMPARISON (&BD6A for the 464)

Action Compares two real values

Entry HL points to the first real value, and DE points to the second real value

Exit A holds the result of the comparison process, IX, IY, and the other flags are corrupt, and all others are
preserved

Notes
After this routine has been called, the value in A depends on the result of the comparison as follows
if the first real number is greater than the second real number, then A holds &01
if the first real number is the same as the second real number, then A holds &00
if the second real number is greater than the first real number, then A holds &FF

&BD91 REAL UNARY MINUS (&BD6D for the 464)

Action Reverses the sign of a real value

Entry HL points to the real value

Exit
HL points to the new value of the real number (which is stored in place of the original number), bit 7 of A
holds the sign of the result (it is negative if bit 7 is set), AF and IX are corrupt, and all other registers are
preserved

&BD94 REAL SIGNUM/SGN (&BD70 for the 464)

Action Tests a real value, and compares it with zero

Entry HL points to the real value

Exit A holds the result of this comparison process, IX and the other ¡lags are corrupt, and all others are
preserved

Notes After this routine has been called, the value in A depends on the result of the comparison as follows
if the real number is greater than 0, then A holds &01, Carry is false, and Zero is false

The Amstrad CPC Firmware Guide 79

if the real number is the same as 0, then A holds &00, Carry is false, and Zero is true
if the real number is smaller than 0, then A holds &FF, Carry is true, and Zero is false

&BD97 SET ANGLE MODE (&BD73 for the 464)

Action Sets the angular calculation mode to either degrees (DEG) or radians (RAD)

Entry A holds the mode setting - 0 for RAD, and any other value for DEG

Exit All registers are preserved

&BD9A REAL PI (&BD76 for the 464)

Action Places the real value of pi at a given memory location

Entry HL holds the address at which the value of pi is to be placed

Exit AF and DE are corrupt, and all other registers are preserved

&BD9D REAL SQR (&BD79 for the 464)

Action Calculates the square root of a real value, leaving the result in lieu of the real value

Entry HL points to the real value

Exit HL points to the result of the calculation, AF, BC, DE, IX and IY are corrupt

&BDA0 REAL POWER (&BD7C for the 464)

Action Raises the first real value to the power of the second real value, leaving the result in lieu of the ¡irst real
value

Entry HL points to the first real value, and DE points to the second real value

Exit HL points to the result of the calculation, AF, BC, DE, IX and IY are corrupt

&BDA3 REAL LOG (&BD7F for the 464)

Action Returns the naperian logarithm (to base e) of a real value, leaving the result in lieu of the real value

Entry HL points to the real value

Exit HL points to the logarithrn that has been calculated, AF, BC, DE, LY and IY are corrupt

&BDA6 REAL LOG 10 (&BD82 for the 464)

Action Returns the logarithm (to base 10) of a real value, leaving the result in lieu of the real value

Entry HL points to the real value

Exit HL points to the logarithrn that has been calculated, AF, BC, DE, IX and IY are corrupt

&BDA9 REAL EXP (&BD85 for the 464)

Action Returns the antilogarithm (base e) of a real value, leaving the result in lieu of the real value

Entry HL points to the real value

Exit HL points to the antilogarithm that has been cal- culated, AF, BC, DE, IX and IY are corrupt

Notes See the BASIC handbook for details of EXP

&BDAC REAL SINE (&BD88 for the 464)

Action Returns the sine of a real value, leaving the result in lieu of the real value

Entry HL points to the real value (ie all angle)

Exit HL points to the sine value that has been calculated, AF, BC, DE, IX and IY are corrupt

&BDAF REAL COSINE (&BD8B for the 464)

Action Returns the cosine of a real value, leaving a the result in lieu of the real value

Entry HL points to the real value (ie an angle)

Exit HL points to the cosine value that has been calculated, AF, BC, DE, IX and IY are corrupt

&BDB2 REAL TANGENT (&BD8E for the 464)

Action Returns the tangent of a real value, leaving the result in lieu of the real value

Entry HL points to the real value (ie an angle)

The Amstrad CPC Firmware Guide 80

Exit HL points to the tangent value that has been cal- culated, AF, BC, DE, IX and IY are corrupt

&BDB5 REAL ARCTANGENT (&BD91 for the 464)

Action Returns the arctangent of a real value, leaving the result in lieu of the real value

Entry HL points to the real value (ie an angle)

Exit HL points to the arctangent value that has been calculated, AF, BC, DE, IX and IY are corrupt All of the
above routines to calculate sine, cosine, tangent and arctangent are slightly inaccuarate

&BDB8 INTERNAL SUBROUTINE - not useful (&BD94 for the 464)

&BDBB INTERNAL SUBROUTINE - not useful (&BD97 for the 464)

&BDBE INTERNAL SUBROUTINE - not useful (&BD9A for the 464)

Maths Subroutines for the 464 only

&BD5B REAL SUBTRACTION

Action Subtracts the second real value from the first real value, and leaves the result in lieu of the first number

Entry HL points to the first real value, and DE points to the second real value

Exit HL points to the result in place of the first real value, AF, BC, DE, IX and IY are corrupt

&BD67 REAL EXPONENT ADDITION

Action Adds the value of the A register to the exponent byte of a real number

Entry HL points to the real value, and A holds the value to he added

Exit HL points to the result in place of the first real value, AF and IX are corrupt, and all others are preserved

&BD9D INTERNAL SUBROUTINE - not useful

&BDA0 INTERNAL SUBROUTINE - not useful

&BDA3 INTERNAL SUBROUTINE - not useful

&BDA6 INTERNAL SUBROUTINE - not useful

&BDA9 INTERNAL SUBROUTINE - not useful

&BDAC INTEGER ADDITION

Action Adds two signed integer values

Entry HL holds the first integer value, and DE holds the second integer value

Exit HL holds the result of the addition, A holds &FF if there is an overflow but is preserved otherwise, the
flags Z are corrupt, and all other registers are preserved

&BDAF INTEGER SUBTRACTION

Action Subtracts the second signed integer value from the first signed integer value

Entry HL holds the first integer value, and DE holds the second integer value

Exit HL holds the result of the subtraction, A holds &FF if there is an overflow but is preserved othenvise, the
flags are corrupt, and all the other registers are preserved

&BDB2 INTEGER REVERSE SUBTRACTION

Action Subtracts the first signed integer value from the second signed integer value

Entry HL holds the first integer value, and DE holds the second integer value

Exit HL holds the result of the subtraction, AF and DE are corrupt, and all others are preserved

&BDB5 INTEGER MULTIPLICATION

Action Multiplies two signed integer values together, and leaves the result in lieu of the first number

Entry HL holds the first integer value, and DE holds the second integer value

Exit HL holds the result of the multiplication, A holds &FF if there is an overflow but is corrupted otherwise,

The Amstrad CPC Firmware Guide 81

the flags, BC and DE are corrupt, and the other registers are preserved

Notes Multiplication of signed integers does not produce the sarne result as with unsigned integers

&BDB8 INTEGER DIVISION

Action Divides the first signed integer value by the second signed integer value

Entry HL holds the first integer value, and DE holds the second integer value

Exit HL holds the result of the division, DE holds the remainder, AF and BC are corrupt, and all others are
preserved

Notes Division of signed integers does not produce the same result as with unsigned integers

&BDBB INTEGER DIVISION 2

Action Divides the first signed integer value by the second signed integer value

Entry HL holds the first integer value, and DE holds the second integer value

Exit DE holds the result of the division, HL holds the remainder, AF and BC are corrupt, and all others are
preserved

Notes Division of signed integers does not produce the same result as with unsigned integers

&BDBE INTERNAL SUBROUTINE - not useful

&BDC1 INTERNAL SUBROUTINE - not useful

&BDC4 INTEGER COMPARISON

Action Compares two signed integer values

Entry HL holds the first integer value, and DE holds the second integer value

Exit A holds the result of the comparison process, the flags are corrupt, and all others are preserved

Notes

After this routine has been called, the value in A depends on the result of the comparison as follows
if the first real number is greater than the second real number, then A holds &01
if the first real number is the same as the second real number, then A holds &00
if the second real number is greater than the first real number, then A holds &FF
With signed integers, the range of values runs from &8000 (-32768) via zero to &7FFF (+32767) and so
any value which is greater than &8000 is considered as being less than a value of &7FFF or less

&BDC7 INTEGER UNARY MINUS

Action Reverses the sign of an integer value (by subtracting it from &10000)

Entry HL holds the integer value

Exit HL holds the new value of the integer number, AF is corrupt, cmd all other registers are preserved

&BDCA INTEGER SIGNUM/SGN

Action Tests a signed integer value

Entry HL holds the integer value

Exit A holds the result of this comparison process, the flags are corrupt, and all others are preserved

Notes

After this routine has been called, the value in A depends on the result of the comparison as follows
if the integer number is greater than 0 and is less than &8000, then A holds &01
if the integer number is the same as 0, then A holds &00
if the integer number is greater than &7FFF and less than or equal to &FFFF, then A holds &FF
See INTEGER COMPARISON for more details on the way that signed integers are laid out

Maths Subroutines for the 664 and 6128 only

&BD5E TEXT INPUT

Action Allows upto 255 characters to be input from the keyboard into a buffer (hmmm ... not really a maths
routine ...)

Entry HL points to the start of the buffer - a NUL character must be placed after any characters already
present, or at the start of the buffer if there is no text

The Amstrad CPC Firmware Guide 82

Exit A has the last key pressed, HL points to the start of the buffer, the flags are corrupt, and all others are
preserved

Notes
This routine prints any existing contents of the buffer (upto the NUL character) and then echoes any
keys used; it allows full line editing with the cursor keys and DEL, etc; it is exited only by use of ENTER
or ESC

&BD7F REAL RND

Action Creates a new RND real value at a location pointed to by HL

Entry HL points to the destination for the result

Exit HL points to the RND value, AF, BC, DE and IX registers are corrupt; and all others are preserved

&BD8B REAL RND(0)

Action Returns the last RND value created, and puts it in a location pointed to by HL

Entry HL points to the place where the value is to be returned to

Exit HL points to the value created, AF, DE and IX are corrupt, and all other registers are preserved

Notes: See the BASIC handbook for more details on RND(0)

The Amstrad CPC Firmware Guide 83

The Z80 Instruction Set

The lists contains all the normal machine code instructions for the microprocessor, plus a number of
undocumented ones. The latter comprise those which operate on the high or low bytes of the Index
registets (IX and lY) which are notated here as HIX, LIX, HIY and LIY - some assemblers may use the
form IXH, etc - and a set of rotation instructions complementary to SRL, which are designated SLL.

The Opcodes and T states
Within the tables of instructions, a number of abbreviations are used:

d displacement (a value from -128 (&80) to +127 (&7F))

n a single byte value (from 0 (&00) to 255 (&FF))

hilo a double byte value (from -32768 (&8000) via 0 to 32767 (&7FFF))

addr an address value (from 0 (&0000) to 65535 (&FFFF))

(in the sequence of opcode bytes, `addr' and `hilo' are entered low byte first)

The next two columns detail the number of bytes applicable to each instruction, and the number of T
states (clock pulses) that each requires - some have two figures which are distinguised as follows:

f means `the number of T states required when the condition is false'

t means `the number of T states needed when the condition is true'

= means `the number of T states needed when either BC=0 and/or A matches the contents of HL'

means `the number of T states required when both the above conditions are false'

z means `the number of T states needed when B=0'

nz means `the number of T states requrred when B<>0'

The Flag Register
The last columns give the effect on the flag bits which each instruction causes:

? means the setting of the bit is unpredictable

- means the setting of the bit is unchanged

0 means that the flag bit is reset to zero

1 means that the flag bit is set to one.

In addition, the Sign flag (bit 7) is also set:

7 if bit 7 of the A register is set

15 if bit 15 of the HL register pair (ie bit 7 of the H register) is set

=7 if bit 7 of the A register would be set by subtraction in lieu of CP

The Zero flag (bi6 6) is also set:

z if the A register or the HL register pair equals zero

= if the A register matches the compared register or value

=A if the A register matches the contents of the address pointed to by HL

The Amstrad CPC Firmware Guide 84

<>B if the B register holds zero

<>b if the bit tested is zero

The Parity/Overflow flag (bit 2) is also set:

p if the register concemed contains an even number of set bits

v if an overflow has occured in Two's Complement arithmetic

BC if BC is not zero

A80 if the A register was &80 before this instruction was performed

i to the contents of the microprocessor's internal interrupt register

The Carry flag (bit 0) is also set:

c if an addition resulted in a carry out of bit 7 (for a register) or bit 15 (for a register pair)

b if a subtraction required a borrow from bit 7 (for a register) or bit 15 (for a register pair)

< if the A register is less than the value or register that is being compared

r0 by the bit rotated in from bit 0 of the register concerned

r7 by the bit rotated in from bit 7 of the register concerned

x if the Carry was reset (ie zero) before this instruction was performed

A0 if tbe A register was &00 before this instruction was performed

The flag register is bit significant, and the bits are defined as follows:

• 7 - Sign

• 6 - Zero

• 5 - unused

• 4 - Half Carry (cannot test)

• 3 - unused

• 2 - Parity/Overflow

• 1 - Add/Subtract (cannot test)

• 0 - Carry

Instruction Opcode B Ts S Z P C

BIT 0,(HL) CB 46 2 12 ? <>b ? -

BIT 0,(IX+d) CB DD 46 d 4 20 ? <>b ? -

BIT 0,(IY+d) CB FD 46 d 4 20 ? <>b ? -

BIT 0,A CB 47 2 8 ? <>b ? -

BIT 0,B CB 40 2 8 ? <>b ? -

BIT 0,C CB 41 2 8 ? <>b ? -

BIT 0,D CB 42 2 8 ? <>b ? -

BIT 0,E CB 43 2 8 ? <>b ? -

BIT 0,H CB 44 2 8 ? <>b ? -

The Amstrad CPC Firmware Guide 85

Instruction Opcode B Ts S Z P C

BIT 0,L CB 45 2 8 ? <>b ? -

BIT 1,(HL) CB 4E 2 12 ? <>b ? -

BIT 1,(IX+d) CB DD 4E d 4 20 ? <>b ? -

BIT 1,(IY+d) CB FD 4E d 4 20 ? <>b ? -

BIT 1,A CB 1F 2 8 ? <>b ? -

BIT 1,B CB 48 2 8 ? <>b ? -

BIT 1,C CB 49 2 8 ? <>b ? -

BIT 1,D CB 4A 2 8 ? <>b ? -

BIT 1,E CB 4B 2 8 ? <>b ? -

BIT 1,H CB 4C 2 8 ? <>b ? -

BIT 1,L CB 4D 2 8 ? <>b ? -

BIT 2,(HL) CB 56 2 12 ? <>b ? -

BIT 2,(IY+d) CB FD 56 d 4 20 ? <>b ? -

BIT 2,(LY+d) CB DD 56 d 4 20 ? <>b ? -

BIT 2,A CB 57 2 8 ? <>b ? -

BIT 2,B CB 50 2 8 ? <>b ? -

BIT 2,C CB 51 2 8 ? <>b ? -

BIT 2,D CB 52 2 8 ? <>b ? -

BIT 2,E CB 53 2 8 ? <>b ? -

BIT 2,H CB 54 2 8 ? <>b ? -

BIT 2,L CB 55 2 8 ? <>b ? -

BIT 3,(HL) CB 5E 2 12 ? <>b ? -

BIT 3,(IX+d) CB DD 5E d 4 20 ? <>b ? -

BIT 3,(IY+d) CB FD 5E d 4 20 ? <>b ? -

BIT 3,A CB 5F 2 8 ? <>b ? -

BIT 3,B CB 58 2 8 ? <>b ? -

BIT 3,C CB 59 2 8 ? <>b ? -

BIT 3,D CB 5A 2 8 ? <>b ? -

BIT 3,E CB 5B 2 8 ? <>b ? -

BIT 3,H CB 5C 2 8 ? <>b ? -

BIT 3,L CB 5D 2 8 ? <>b ? -

BIT 4,(HL) CB 66 2 12 ? <>b ? -

BIT 4,(IY+d) CB FD 66 d 4 20 ? <>b ? -

BIT 4,(LY+d) CB DD 66 d 4 20 ? <>b ? -

BIT 4,A CB 67 2 8 ? <>b ? -

BIT 4,B CB 60 2 8 ? <>b ? -

BIT 4,C CB 61 2 8 ? <>b ? -

BIT 4,D CB 62 2 8 ? <>b ? -

The Amstrad CPC Firmware Guide 86

Instruction Opcode B Ts S Z P C

BIT 4,E CB 63 2 8 ? <>b ? -

BIT 4,H CB 64 2 8 ? <>b ? -

BIT 4,L CB 65 2 8 ? <>b ? -

BIT 5,(HL) CB 6E 2 12 ? <>b ? -

BIT 5,(IX+d) CB DD 6E d 4 20 ? <>b ? -

BIT 5,(IY+d) CB FD 6E d 4 20 ? <>b ? -

BIT 5,A CB 6F 2 8 ? <>b ? -

BIT 5,B CB 68 2 8 ? <>b ? -

BIT 5,C CB 69 2 8 ? <>b ? -

BIT 5,D CB 6A 2 8 ? <>b ? -

BIT 5,E CB 6B 2 8 ? <>b ? -

BIT 5,H CB 6C 2 8 ? <>b ? -

BIT 5,L CB 6D 2 8 ? <>b ? -

BIT 6,(HL) CB 76 2 12 ? <>b ? -

BIT 6,(IX+d) CB DD 76 d 4 20 ? <>b ? -

BIT 6,(IY+d) CB FD 76 d 4 20 ? <>b ? -

BIT 6,A CB 77 2 8 ? <>b ? -

BIT 6,B CB 70 2 8 ? <>b ? -

BIT 6,C CB 71 2 8 ? <>b ? -

BIT 6,D CB 72 2 8 ? <>b ? -

BIT 6,E CB 73 2 8 ? <>b ? -

BIT 6,H CB 74 2 8 ? <>b ? -

BIT 6,L CB 75 2 8 ? <>b ? -

BIT 7,(HL) CB 7E 2 12 ? <>b ? -

BIT 7,(IX+d) CB DD 7E d 4 20 ? <>b ? -

BIT 7,(IY+d) CB FD 7E d 4 20 ? <>b ? -

BIT 7,A CB 7F 2 8 ? <>b ? -

BIT 7,B CB 78 2 8 ? <>b ? -

BIT 7,C CB 79 2 8 ? <>b ? -

BIT 7,D CB 7A 2 8 ? <>b ? -

BIT 7,E CB 7B 2 8 ? <>b ? -

BIT 7,H CB 7C 2 8 ? <>b ? -

BIT 7,L CB 7D 2 8 ? <>b ? -

CALL addr CD dr ad 3 17 - - - -

CALL c,addr DC dr ad 3 t17f10 - - - -

CALL m,addr FC dr ad 3 t17f10 - - - -

CALL nc,addr D4 dr ad 3 t17f10 - - - -

CALL nz,addr C4 dr ad 3 t17f10 - - - -

The Amstrad CPC Firmware Guide 87

Instruction Opcode B Ts S Z P C

CALL p,addr F4 dr ad 3 t17f10 - - - -

CALL po,addr E4 dr ad 3 t17f10 - - - -

CALL pe,addr EC dr ad 3 t17f10 - - - -

CALL z,addr CC dr ad 3 t17f10 - - - -

CCF 3F 1 4 - - - x

CP (HL) BE 1 7 =7 = v <

CP (IX+d) DD BE d 3 19 =7 = v <

CP (IY+d) FD BE d 3 19 =7 = v <

CP A BF 1 4 =7 = v <

CP B B8 1 4 =7 = v <

CP C B9 1 4 =7 = v <

CP D BA 1 4 =7 = v <

CP E BB 1 4 =7 = v <

CP H BC 1 4 =7 = v <

CP HIX DD BC 2 8 =7 = v <

CP HIY FD BC 2 8 =7 = v <

CP L BD 1 4 =7 = v c

CP LIX DD BD 2 8 =7 = v <

CP LIY FD BD 2 8 =7 = v <

CP n FE n 2 7 =7 = v <

CPD ED A9 2 16 ? =A BC -

CPDR ED B9 2 =16#21 ? =A BC -

CPI ED A1 2 16 ? =A BC -

CPIR ED B2 2 =16#21 ? =A BC -

CPL 2F 1 4 - - - -

DAA 27 1 4 7 z p c

DEC (HL) 35 1 11 7 z v -

DEC (IX+d) DD 35 d 3 23 7 z v -

DEC (IY+d) FD 35 d 3 23 7 z v -

DEC A 3D 1 4 7 z v -

DEC B 05 1 4 7 z v -

DEC BC 0B 1 6 - - - -

DEC C 0D 1 4 7 z v -

DEC D 15 1 4 7 z v -

DEC DE 1B I 6 - - - -

DEC E 1D 1 4 7 z v -

DEC H 25 1 4 7 z v -

DEC HIX DD 25 2 8 7 z v -

The Amstrad CPC Firmware Guide 88

Instruction Opcode B Ts S Z P C

DEC HIY FD 25 2 8 7 z v -

DEC HL 2B 1 6 - - - -

DEC IX DD 2B 2 10 - - - -

DEC IY FD 2B 2 10 - - - -

DEC L 2D 1 4 7 z v -

DEC LIX DD 2D 2 8 7 z v -

DEC LIY FD 2D 2 8 7 z v -

DEC SP 3B 1 6 - - - -

DI F3 1 4 - - - -

DJNZ d 10 d 2 t13f8 - - - -

EI FB 1 4 - - - -

EX (SP),HL E3 1 19 - - - -

EX (SP),IX DD E3 2 23 - - - -

EX (SP),IY FD E3 2 23 - - - -

EX AF,AF' 08 1 4 s' z' p' c'

EX DE,HL EB 1 4 - - - -

EXX D9 1 4 - - - -

HALT 76 1 min 4 - - - -

IM 0 ED 46 2 8 - - - -

IM 1 ED 56 2 8 - - - -

IM 2 ED 5E 2 8 - - - -

IN A,(C) ED 78 2 12 7 z p 0

IN A,(n) DB n 2 11 - - - -

IN B,(C) ED 40 2 12 7 z p 0

IN C,(C) ED 48 2 12 7 z p 0

IN D,(C) ED 50 2 12 7 z p 0

IN E,(C) ED 58 2 12 7 z p 0

IN H,(C) ED 60 2 12 7 z p 0

IN L,(C) ED 68 2 12 7 z p 0

INC (HL) 34 1 11 7 z v -

INC (IX+d) DD 34 d 3 23 7 z v -

INC (IY+d) FD 34 d 3 23 7 z v -

INC A 3C 1 4 7 z v -

INC B 04 1 4 7 z v -

INC BC 03 1 6 - - - -

INC C 0C 1 4 7 z v -

INC D 14 1 4 7 z v -

INC DE 13 1 6 - - - -

The Amstrad CPC Firmware Guide 89

Instruction Opcode B Ts S Z P C

INC E 1C 1 4 7 z v -

INC H 24 1 4 7 z v -

INC HIX DD 24 2 8 7 z v -

INC HIY FD 24 2 8 7 z v -

INC HL 23 1 6 - - - -

INC IX DD 23 2 10 - - - -

INC IY FD 23 2 10 - - - -

INC L 2C 1 4 7 z v -

INC LIX DD 2C 2 8 7 z v -

INC LIY FD 2C 2 8 7 z v -

INC SP 33 1 6 - - - -

IND ED AA 2 16 ? <>B ? -

INDR ED BA 2 z16nz21 ? 1 ? -

INI ED A2 2 16 ? <>B ? -

INIR ED B2 2 z16nz21 ? 1 ? -

JP (HL) E9 1 4 - - - -

JP (IX) DD E9 2 8 - - - -

JP (IY) FD E9 2 8 - - - -

JP addr C3 dr ad 3 10 - - - -

JP c,addr DA dr ad 3 10 - - - -

JP m,addr FA dr ad 3 10 - - - -

JP nc,addr D2 dr ad 3 10 - - - -

JP nz,addr C2 dr ad 3 10 - - - -

JP p,addr F2 dr ad 3 10 - - - -

JP po,addr E2 dr ad 3 10 - - - -

JP pe,addr EA dr ad 3 10 - - - -

JP z,addr CA dr ad 3 10 - - - -

JR c,d 38 d 2 t12f7 - - - -

JR d 18 d 2 12 - - - -

JR nc,d 30 d 2 t12f7 - - - -

JR nz,d 20 d 2 t12f7 - - - -

JR z,d 28 d 2 t12f7 - - - -

LD (addr),A 32 dr ad 3 13 - - - -

LD (addr),BC ED 43 dr ad 4 20 - - - -

LD (addr),DE ED 53 dr ad 4 20 - - - -

LD (addr),HL 22 dr ad 3 16 - - - -

LD (addr),HL ED 63 dr ad 4 20 - - - -

LD (addr),IX DD 22 dr ad 4 20 - - - -

The Amstrad CPC Firmware Guide 90

Instruction Opcode B Ts S Z P C

LD (addr),IY FD 22 dr ad 4 20 - - - -

LD (addr),SP ED 73 dr ad 4 20 - - - -

LD (BC),A 02 1 7 - - - -

LD (DE),A 12 1 7 - - - -

LD (HL),A 77 1 7 - - - -

LD (HL),A 77 1 7 - - - -

LD (HL),B 70 1 7 - - - -

LD (HL),C 71 1 7 - - - -

LD (HL),D 72 1 7 - - - -

LD (HL),E 73 1 7 - - - -

LD (HL),H 74 1 7 - - - -

LD (HL),L 75 1 7 - - - -

LD (HL),n 36 n 2 10 - - - -

LD (IX+d),A DD 77 d 3 19 - - - -

LD (IX+d),B DD 70 d 3 19 - - - -

LD (IX+d),C DD 71 d 3 19 - - - -

LD (IX+d),D DD 72 d 3 19 - - - -

LD (IX+d),E DD 73 d 3 19 - - - -

LD (IX+d),H DD 71 d 3 19 - - - -

LD (IX+d),L DD 75 d 3 19 - - - -

LD (IX+d),n DD 36 d n 4 19 - - - -

LD (IY+d),A FD 77 d 3 19 - - - -

LD (IY+d),B FD 70 d 3 19 - - - -

LD (IY+d),C FD 71 d 3 19 - - - -

LD (IY+d),D FD 72 d 3 19 - - - -

LD (IY+d),E FD 73 d 3 19 - - - -

LD (IY+d),H FD 74 d 3 19 - - - -

LD (IY+d),L FD 75 d 3 19 - - - -

LD (IY+d),n FD 36 d n 4 19 - - - -

LD A,(addr) 3A dr ad 3 13 - - - -

LD A,(BC) 0A 1 7 - - - -

LD A,(DE) 1A 1 7 - - - -

LD A,(HL) 7E 1 7 - - - -

LD A,(HL) 7E 1 7 - - - -

LD A,(IX+d) DD 7E d 3 19 - - - -

LD A,(IY+d) FD 7E d 3 19 - - - -

LD A,A 7F 1 4 - - - -

LD A,B 78 1 4 - - - -

The Amstrad CPC Firmware Guide 91

Instruction Opcode B Ts S Z P C

LD A,C 79 1 4 - - - -

LD A,D 7A 1 4 - - - -

LD A,E 7B 1 4 - - - -

LD A,H 7C 1 4 - - - -

LD A,HIX DD 7C 2 8 - - - -

LD A,HIY FD 7C 2 8 - - - -

LD A,I ED 57 2 9 7 z i 0

LD A,L 7D 1 4 - - - -

LD A,LIX DD 7D 2 8 - - - -

LD A,LIY FD 7D 2 8 - - - -

LD A,n 3E n 2 7 - - - -

LD A,R ED 5F 2 9 7 z i 0

LD B,(HL) 46 1 7 - - - -

LD B,(IX+d) DD 46 d 3 19 - - - -

LD B,(IY+d) FD 46 d 3 19 - - - -

LD B,A 47 1 4 - - - -

LD B,B 40 1 4 - - - -

LD B,C 41 1 4 - - - -

LD B,D 42 1 4 - - - -

LD B,E 43 1 4 - - - -

LD B,H 44 1 4 - - - -

LD B,HIX DD 44 2 8 - - - -

LD B,HIY FD 44 2 8 - - - -

LD B,L 45 1 4 - - - -

LD B,LIX DD 45 2 8 - - - -

LD B,LIY FD 45 2 8 - - - -

LD B,n 06 n 2 7 - - - -

LD BC,(addr) ED 4B dr ad 4 20 - - - -

LD BC,hilo 01 lo hi 3 10 - - - -

LD C,(HL) 4E 1 7 - - - -

LD C,(IX+d) DD 4E d 3 19 - - - -

LD C,(IY+d) DD 4E d 3 19 - - - -

LD C,A 4F 1 4 - - - -

LD C,B 48 1 4 - - - -

LD C,C 49 1 1 - - - -

LD C,D 4A 1 1 - - - -

LD C,E 4B 1 4 - - - -

LD C,H 4C 1 4 - - - -

The Amstrad CPC Firmware Guide 92

Instruction Opcode B Ts S Z P C

LD C,HIX DD 4C 2 8 - - - -

LD C,HIY FD 4C 2 8 - - - -

LD C,L 4D 1 4 - - - -

LD C,LIX DD 4D 2 8 - - - -

LD C,LIY FD 4D 2 8 - - - -

LD C,n 0E n 2 7 - - - -

LD D,(HL) 56 1 7 - - - -

LD D,(IX+d) DD 56 d 3 19 - - - -

LD D,(IY+d) FD 56 d 3 19 - - - -

LD D,A 57 1 4 - - - -

LD D,B 50 1 4 - - - -

LD D,C 51 1 4 - - - -

LD D,D 52 1 4 - - - -

LD D,E 53 1 4 - - - -

LD D,H 54 1 4 - - - -

LD D,HIX DD 54 2 8 - - - -

LD D,HIY FD 54 2 8 - - - -

LD D,L 55 1 4 - - - -

LD D,LIX DD 55 2 8 - - - -

LD D,LIY FD 55 2 8 - - - -

LD D,n 16 n 2 7 - - - -

LD DE,(addr) ED 5B dr ad 4 20 - - - -

LD DE,hilo 11 lo hi 3 10 - - - -

LD E,(HL) 5E 1 7 - - - -

LD E,(IX+d) DD 5E d 3 19 - - - -

LD E,(IY+d) FD 5E d 3 19 - - - -

LD E,A 5F 1 4 - - - -

LD E,B 58 1 4 - - - -

LD E,C 59 1 4 - - - -

LD E,D 5A 1 4 - - - -

LD E,E 5B 1 4 - - - -

LD E,H 5C 1 4 - - - -

LD E,HIX DD 5C 2 8 - - - -

LD E,HIY FD 5C 2 8 - - - -

LD E,L 5D 1 4 - - - -

LD E,LIX DD 5D 2 8 - - - -

LD E,LIY FD 5D 2 8 - - - -

LD E,n 1E n 2 7 - - - -

The Amstrad CPC Firmware Guide 93

Instruction Opcode B Ts S Z P C

LD H,(HL) 66 1 7 - - - -

LD H,(IX+d) DD 66 d 3 19 - - - -

LD H,(IY+d) FD 66 d 3 19 - - - -

LD H,A 67 1 4 - - - -

LD H,B 60 1 4 - - - -

LD H,C 61 1 4 - - - -

LD H,D 62 1 4 - - - -

LD H,E 63 1 4 - - - -

LD H,H 64 1 4 - - - -

LD H,L 65 1 4 - - - -

LD H,n 26 n 2 7 - - - -

LD HIX,A DD 67 2 8 - - - -

LD HIX,B DD 60 2 8 - - - -

LD HIX,C DD 61 2 8 - - - -

LD HIX,D DD 62 2 8 - - - -

LD HIX,E DD 63 2 8 - - - -

LD HIX,HIX DD 64 2 8 - - - -

LD HIX,LIX DD 65 2 8 - - - -

LD HIX,n DD 26 n 3 11 - - - -

LD HIY,A FD 67 2 8 - - - -

LD HIY,B FD 60 2 8 - - - -

LD HIY,C FD 61 2 8 - - - -

LD HIY,D FD 62 2 8 - - - -

LD HIY,E FD 63 2 8 - - - -

LD HIY,HIY FD 64 2 8 - - - -

LD HIY,LIY FD 65 2 8 - - - -

LD HIY,n FD 26 n 3 11 - - - -

LD HL,(addr) 2A dr ad 3 16 - - - -

LD HL,(addr) ED 6B dr ad 4 20 - - - -

LD HL,hilo 21 lo hi 3 10 - - - -

LD I,A ED 47 2 9 - - - -

LD IX,(addr) DD 2A dr ad 4 20 - - - -

LD IX,hilo DD 2A lo hi 4 14 - - - -

LD IY,(addr) FD 2A dr ad 4 20 - - - -

LD IY,hilo FD 21 lo hi 4 14 - - - -

LD L,(HL) 6E 1 7 - - - -

LD L,(IX+d) DD 6E d 3 19 - - - -

LD L,(IY+d) FD 6E d 3 19 - - - -

The Amstrad CPC Firmware Guide 94

Instruction Opcode B Ts S Z P C

LD L,A 6F 1 4 - - - -

LD L,B 68 1 4 - - - -

LD L,C 69 1 4 - - - -

LD L,D 6A 1 4 - - - -

LD L,E 6B 1 4 - - - -

LD L,H 6C 1 4 - - - -

LD L,L 6D 1 4 - - - -

LD L,n 2E n 2 7 - - - -

LD LIX,A DD 6F 2 8 - - - -

LD LIX,B DD 68 2 8 - - - -

LD LIX,C DD 69 2 8 - - - -

LD LIX,D DD 6A 2 8 - - - -

LD LIX,E DD 6B 2 8 - - - -

LD LIX,HIX DD 6C 2 8 - - - -

LD LIX,LIX DD 6D 2 8 - - - -

LD LIX,n DD 2E n 3 11 - - - -

LD LIY,A FD 6F 2 8 - - - -

LD LIY,B FD 68 2 8 - - - -

LD LIY,C FD 69 2 8 - - - -

LD LIY,D FD 6A 2 8 - - - -

LD LIY,E FD 6B 2 8 - - - -

LD LIY,HIY FD 6C 2 8 - - - -

LD LIY,LIY FD 6D 2 8 - - - -

LD LIY,n FD 2E n 3 11 - - - -

LD R,A ED 4F 2 9 - - - -

LD SP,(addr) ED 7B dr ad 4 20 - - - -

LD SP,hilo 31 lo hi 3 10 - - - -

LD SP,HL F9 1 6 - - - -

LD SP,IX DD F9 2 10 - - - -

LD SP,IY FD F9 2 10 - - - -

LDD ED A8 2 16 - - BC -

LDDR ED B8 2 z16nz21 - - 0 -

LDI ED A0 2 16 - - BC -

LDIR ED B0 2 zI6nz21 - - 0 -

NEG ED 44 2 8 7 z A80 A0

NOP 00 1 4 - - - -

OR (HL) B6 1 7 7 z P 0

OR (IX+d) DD B6 d 3 19 7 z p 0

The Amstrad CPC Firmware Guide 95

Instruction Opcode B Ts S Z P C

OR (IY+d) FD B6 d 3 19 7 z p 0

OR A B7 1 4 7 z p 0

OR B B0 1 4 7 z p 0

OR C B1 1 4 7 z p 0

OR D B2 1 4 7 z p 0

OR E B3 1 4 7 z p 0

OR H B4 1 4 7 z p 0

OR HIX DD B4 2 8 7 z p 0

OR HIY FD B4 2 8 7 z p 0

OR L B5 1 4 7 z p 0

OR LIX DD B5 2 8 7 z p 0

OR LIY FD B5 2 8 7 z p 0

OR n F6 n 2 7 7 z p 0

OTDR ED BB 2 z16nz21 ? 1 ? -

OTIR ED B3 2 zI6nz21 ? I ? -

OUT (C),A ED 79 2 12 - - - -

OUT (C),B ED 41 2 12 - - - -

OUT (C),C ED 49 2 12 - - - -

OUT (C),D ED 51 2 12 - - - -

OUT (C),E ED 59 2 12 - - - -

OUT (C),H ED 61 2 12 - - - -

OUT (C),L ED 69 2 12 - - - -

OUT (n),A D3 n 2 11 - - - -

OUTD ED AB 2 16 ? <>B ? -

OUTI ED A3 2 16 ? <>B ? -

POP AF F1 1 10 POP POP POP POP

POP BC C1 1 10 - - - -

POP DE D1 1 10 - - - -

POP HL E1 1 10 - - - -

POP IX DD E1 2 14 - - - -

POP IY FD E1 2 14 - - - -

PUSH AF F5 1 11 - - - -

PUSH BC C5 1 11 - - - -

PUSH DE D5 1 11 - - - -

PUSH HL E5 1 11 - - - -

PUSH IX DD E5 2 15 - - - -

PUSH IY FD E5 2 15 - - - -

RES 0,(HL) CB 86 2 15 - - - -

The Amstrad CPC Firmware Guide 96

Instruction Opcode B Ts S Z P C

RES 0,(IX+d) DD CB d 86 4 23 - - - -

RES 0,(IY+d) FD CB d 86 4 23 - - - -

RES 0,A CB 87 2 8 - - - -

RES 0,B CB 80 2 8 - - - -

RES 0,C CB 81 2 8 - - - -

RES 0,D CB 82 2 8 - - - -

RES 0,E CB 83 2 8 - - - -

RES 0,H CB 81 2 8 - - - -

RES 0,L CB 85 2 8 - - - -

RES 1,(HL) CB 8E 2 15 - - - -

RES 1,(IX+d) DD CB d 8E 4 23 - - - -

RES 1,(IY+d) FD CB d 8E 4 23 - - - -

RES 1,A CB 8F 2 8 - - - -

RES 1,B CB 88 2 8 - - - -

RES 1,C CB 89 2 8 - - - -

RES 1,D CB 8A 2 8 - - - -

RES 1,E CB 8B 2 8 - - - -

RES 1,H CB 8C 2 8 - - - -

RES 1,L CB 8D 2 8 - - - -

RES 2,(HL) CB 96 2 15 - - - -

RES 2,(IX+d) DD CB d 96 4 23 - - - -

RES 2,(IY+d) FD CB d 96 4 23 - - - -

RES 2,A CB 97 2 8 - - - -

RES 2,B CB 90 2 8 - - - -

RES 2,C CB 91 2 8 - - - -

RES 2,D CB 92 2 8 - - - -

RES 2,E CB 93 2 8 - - - -

RES 2,H CB 94 2 8 - - - -

RES 2,L CB 95 2 8 - - - -

RES 3,(HL) CB 9E 2 15 - - - -

RES 3,(IX+d) DD CB d 9E 4 23 - - - -

RES 3,(IY+d) FD CB d 9E 4 23 - - - -

RES 3,A CB 9F 2 8 - - - -

RES 3,B CB 98 2 8 - - - -

RES 3,C CB 99 2 8 - - - -

RES 3,D CB 9A 2 8 - - - -

RES 3,E CB 9B 2 8 - - - -

RES 3,H CB 9C 2 8 - - - -

The Amstrad CPC Firmware Guide 97

Instruction Opcode B Ts S Z P C

RES 3,L CB 9D 2 8 - - - -

RES 4,(HL) CB A6 2 15 - - - -

RES 4,(IX+d) DD CB d A6 4 23 - - - -

RES 4,(IY+d) FD CB d A6 4 23 - - - -

RES 4,A CB A7 2 8 - - - -

RES 4,B CB A0 2 8 - - - -

RES 4,C CB A1 2 8 - - - -

RES 4,D CB A2 2 8 - - - -

RES 4,E CB A3 2 8 - - - -

RES 4,H CB A4 2 8 - - - -

RES 4,L CB A5 2 8 - - - -

RES 5,(HL) CB AE 2 15 - - - -

RES 5,(IX+d) DD CB d AE 4 23 - - - -

RES 5,(IY+d) FD CB d AE 4 23 - - - -

RES 5,A CB AF 2 8 - - - -

RES 5,B CB A8 2 8 - - - -

RES 5,C CB A9 2 8 - - - -

RES 5,D CB AA 2 8 - - - -

RES 5,E CB AB 2 8 - - - -

RES 5,H CB AC 2 8 - - - -

RES 5,L CB AD 2 8 - - - -

RES 6,(HL) CB B6 2 15 - - - -

RES 6,(IX+d) DD CB d B6 4 23 - - - -

RES 6,(IY+d) FD CB d B6 4 23 - - - -

RES 6,A CB B7 2 8 - - - -

RES 6,B CB B0 2 8 - - - -

RES 6,C CB B1 2 8 - - - -

RES 6,D CB B2 2 8 - - - -

RES 6,E CB B3 2 8 - - - -

RES 6,H CB B4 2 8 - - - -

RES 6,L CB B5 2 8 - - - -

RES 7,(HL) CB BE 2 15 - - - -

RES 7,(IX+d) DD CB d BE 4 23 - - - -

RES 7,(IY+d) FD CB d BE 4 23 - - - -

RES 7,A CB BF 2 8 - - - -

RES 7,B CB B8 2 8 - - - -

RES 7,C CB B9 2 8 - - - -

RES 7,D CB BA 2 8 - - - -

The Amstrad CPC Firmware Guide 98

Instruction Opcode B Ts S Z P C

RES 7,E CB BB 2 8 - - - -

RES 7,H CB BC 2 8 - - - -

RES 7,L CB BD 2 8 - - - -

RET C9 1 10 - - - -

RET C D8 1 t11f8 - - - -

RET M F8 1 t11f8 - - - -

RET NC D0 1 t11f8 - - - -

RET NZ C0 1 t11f8 - - - -

RET P F0 1 t11f8 - - - -

RET PE E8 1 t11f8 - - - -

RET PO E0 1 t11f8 - - - -

RET Z C8 1 t11f8 - - - -

RETI ED 4D 2 14 - - - -

RETN ED 45 2 14 - - - -

RL (HL) CB 16 2 15 7 z p r7

RL (IX+d) DD CB d 16 4 23 7 z p r7

RL (IY+d) FD CB d 16 4 23 7 z p r7

RL A CB 17 2 8 7 z p r7

RL B CB 10 2 8 7 z p r7

RL C CB 11 2 8 7 z p r7

RL D CB 12 2 8 7 z p r7

RL E CB 13 2 8 7 z p r7

RL H CB 14 2 8 7 z p r7

RL L CB 15 2 8 7 z p r7

RLA 17 1 4 - - - r7

RLC (HL) CB 06 2 15 7 z p r7

RLC (IX+d) DD CB d 06 4 23 7 z p r7

RLC (IY+d) FD CB d 06 4 23 7 z p r7

RLC A CB 07 2 8 7 z p r7

RLC B CB 00 2 8 7 z p r7

RLC C CB 01 2 8 7 z p r7

RLC D CB 02 2 8 7 z p r7

RLC E CB 03 2 8 7 z p r7

RLC H CB 04 2 8 7 z p r7

RLC L CB 05 2 8 7 z p r7

RLCA 07 1 4 - - - r7

RLD ED 6F 2 18 7 z p -

RR (HL) CB 1E 2 15 7 z p r0

The Amstrad CPC Firmware Guide 99

Instruction Opcode B Ts S Z P C

RR (IX+d) DD CB d 1E 4 23 7 z p r0

RR (IY+d) FD CB d 1E 4 23 7 z p r0

RR A CB 1F 2 8 7 z p r0

RR B CB 18 2 8 7 z p r0

RR C CB 19 2 8 7 z p r0

RR D CB 1A 2 8 7 z p r0

RR E CB 1B 2 8 7 z p r0

RR H CB 1C 2 8 7 z p r0

RR L CB 1D 2 8 7 z p r0

RRA 1F 1 4 - - - r0

RRC (HL) CB 0E 2 15 7 z p r0

RRC (IX+d) DD CB d 0E 4 23 7 z p r0

RRC (IY+d) FD CB d 0E 4 23 7 z p r0

RRC A CB 0F 2 8 7 z p r0

RRC B CB 08 2 8 7 z p r0

RRC C CB 09 2 8 7 z p r0

RRC D CB 0A 2 8 7 z p r0

RRC E CB 0B 2 8 7 z p r0

RRC H CB 0C 2 8 7 z p r0

RRC L CB 0D 2 8 7 z p r0

RRCA 0F 1 4 - - - r0

RRD ED 67 2 18 7 z p -

RST 0 C7 1 11 - - - -

RST 1,addr CF dr ad 3 (11) - - - -

RST 2,addr D7 dr ad 3 (11) - - - -

RST 3,addr DF dr ad 3 (11) - - - -

RST 4 E7 1 11 - - - -

RST 5,addr EF dr ad 3 (11) - - - -

RST 6 F7 1 11 - - - -

RST 7 FF 1 11 - - - -

SBC A,(HL) 9E 1 7 7 z v b

SBC A,(IX+d) DD 9E d 3 19 7 z v b

SBC A,(IY+d) FD 9E d 3 19 7 z v b

SBC A,A 9F 1 4 7 z v b

SBC A,B 98 1 4 7 z v b

SBC A,C 99 1 4 7 z v b

SBC A,D 9A 1 4 7 z v b

SBC A,E 9B 1 4 7 z v b

The Amstrad CPC Firmware Guide 100

Instruction Opcode B Ts S Z P C

SBC A,H 9C 1 4 7 z v b

SBC A,HIX DD 9C 2 8 7 z v b

SBC A,HIY FD 9C 2 8 7 z v b

SBC A,L 9D 1 4 7 z v b

SBC A,LIX DD 9D 2 8 7 z v b

SBC A,LIY FD 9D 2 8 7 z v b

SBC A,n DE n 2 7 7 z v b

SBC HL,BC ED 42 2 15 15 z v b

SBC HL,DE ED 52 2 15 15 z v b

SBC HL,HL ED 62 2 15 15 z v b

SBC HL,SP ED 72 2 15 15 z v b

SCF 37 1 4 - - - 1

SET 0,(HL) CB C6 2 15 - - - -

SET 0,(IX+d) DD CB d C6 4 23 - - - -

SET 0,(IY+d) FD CB d C6 4 23 - - - -

SET 0,A CB C7 2 8 - - - -

SET 0,B CB C0 2 8 - - - -

SET 0,C CB C1 2 8 - - - -

SET 0,D CB C2 2 8 - - - -

SET 0,E CB C3 2 8 - - - -

SET 0,H CB C4 2 8 - - - -

SET 0,L CB C5 2 8 - - - -

SET 1,(HL) CB CE 2 15 - - - -

SET 1,(IX+d) DD CB d CE 4 23 - - - -

SET 1,(IY+d) FD CB d CE 4 23 - - - -

SET 1,A CB CF 2 8 - - - -

SET 1,B CB C8 2 8 - - - -

SET 1,C CB C9 2 8 - - - -

SET 1,D CB CA 2 8 - - - -

SET 1,E CB CB 2 8 - - - -

SET 1,H CB CC 2 8 - - - -

SET 1,L CB CD 2 8 - - - -

SET 2,(HL) CB D6 2 15 - - - -

SET 2,(IX+d) DD CB d D6 4 23 - - - -

SET 2,(IY+d) FD CB d D6 4 23 - - - -

SET 2,A CB D7 2 8 - - - -

SET 2,B CB D0 2 8 - - - -

SET 2,C CB D1 2 8 - - - -

The Amstrad CPC Firmware Guide 101

Instruction Opcode B Ts S Z P C

SET 2,D CB D2 2 8 - - - -

SET 2,E CB D3 2 8 - - - -

SET 2,H CB D4 2 8 - - - -

SET 2,L CB D5 2 8 - - - -

SET 3,(HL) CB DE 2 15 - - - -

SET 3,(IX+d) DD CB d DE 4 23 - - - -

SET 3,(IY+d) FD CB d DE 4 23 - - - -

SET 3,A CB DF 2 8 - - - -

SET 3,B CB D8 2 8 - - - -

SET 3,C CB D9 2 8 - - - -

SET 3,D CB DA 2 8 - - - -

SET 3,E CB DB 2 8 - - - -

SET 3,H CB DC 2 8 - - - -

SET 3,L CB DD 2 8 - - - -

SET 4,(HL) CB E6 2 15 - - - -

SET 4,(IX+d) DD CB d E6 4 23 - - - -

SET 4,(IY+d) FD CB d E6 4 23 - - - -

SET 4,A CB E7 2 8 - - - -

SET 4,B CB E0 2 8 - - - -

SET 4,C CB E1 2 8 - - - -

SET 4,D CB E2 2 8 - - - -

SET 4,E CB E3 2 8 - - - -

SET 4,H CB E4 2 8 - - - -

SET 4,L CB E5 2 8 - - - -

SET 5,(HL) CB EE 2 15 - - - -

SET 5,(IX+d) DD CB d EE 4 23 - - - -

SET 5,(IY+d) FD CB d EE 4 23 - - - -

SET 5,A CB EF 2 8 - - - -

SET 5,B CB E8 2 8 - - - -

SET 5,C CB E9 2 8 - - - -

SET 5,D CB EA 2 8 - - - -

SET 5,E CB EB 2 8 - - - -

SET 5,H CB EC 2 8 - - - -

SET 5,L CB ED 2 8 - - - -

SET 6,(HL) CB F6 2 15 - - - -

SET 6,(IX+d) DD CB d F6 4 23 - - - -

SET 6,(IY+d) FD CB d F6 4 23 - - - -

SET 6,A CB F7 2 8 - - - -

The Amstrad CPC Firmware Guide 102

Instruction Opcode B Ts S Z P C

SET 6,B CB F0 2 8 - - - -

SET 6,C CB F1 2 8 - - - -

SET 6,D CB F2 2 8 - - - -

SET 6,E CB F3 2 8 - - - -

SET 6,H CB F4 2 8 - - - -

SET 6,L CB F5 2 8 - - - -

SET 7,(HL) CB FE 2 15 - - - -

SET 7,(IX+d) DD CB d FE 4 23 - - - -

SET 7,(IY+d) FD CB d FE 4 23 - - - -

SET 7,A CB FF 2 8 - - - -

SET 7,B CB F8 2 8 - - - -

SET 7,C CB F9 2 8 - - - -

SET 7,D CB FA 2 8 - - - -

SET 7,E CB FB 2 8 - - - -

SET 7,H CB FC 2 8 - - - -

SET 7,L CB FD 2 8 - - - -

SLA (HL) CB 26 2 15 7 z p r7

SLA (IX+d) DD CB d 26 4 23 7 z p r7

SLA (IY+d) FD CB d 26 4 23 7 z p r7

SLA A CB 27 2 8 7 z p r7

SLA B CB 20 2 8 7 z p r7

SLA C CB 21 2 8 7 z p r7

SLA D CB 22 2 8 7 z p r7

SLA E CB 23 2 8 7 z p r7

SLA H CB 24 2 8 7 z p r7

SLA L CB 25 2 8 7 z p r7

SLL (HL) CB 36 2 15 7 z p r7

SLL (IX+d) DD CB d 36 4 23 7 z p r7

SLL (IY+d) FD CB d 36 4 23 7 z p r7

SLL A CB 37 2 8 7 z p r7

SLL B CB 30 2 8 7 z p r7

SLL C CB 31 2 8 7 z p r7

SLL D CB 32 2 8 7 z p r7

SLL E CB 33 2 8 7 z p r7

SLL H CB 34 2 8 7 z p r7

SLL L CB 35 2 8 7 z p r7

SRA (HL) CB 2E 2 15 7 z p r0

SRA (IX+d) DD CB d 2E 4 23 7 z p r0

The Amstrad CPC Firmware Guide 103

Instruction Opcode B Ts S Z P C

SRA (IY+d) FD CB d 2E 4 23 7 z p r0

SRA A CB 2F 2 8 7 z p r0

SRA B CB 28 2 8 7 z p r0

SRA C CB 29 2 8 7 z p r0

SRA D CB 2A 2 8 7 z p r0

SRA E CB 2B 2 8 7 z p r0

SRA H CB 2C 2 8 7 z p r0

SRA L CB 2D 2 8 7 z p r0

SRL (HL) CB 3E 2 15 7 z p r0

SRL (IX+d) DD CB d 3E 4 23 7 z p r0

SRL (IY+d) FD CB d 3E 4 23 7 z p r0

SRL A CB 3F 2 8 7 z p r0

SRL B CB 38 2 8 7 z p r0

SRL C CB 39 2 8 7 z p r0

SRL D CB 3A 2 8 7 z p r0

SRL E CB 3B 2 8 7 z p r0

SRL H CB 3C 2 8 7 z p r0

SRL L CB 3D 2 8 7 z p r0

SUB (HL) 96 1 7 7 z v b

SUB (IX+d) DD 96 d 3 19 7 z v b

SUB (IY+d) FD 96 d 3 19 7 z v b

SUB A 97 1 4 7 z v b

SUB B 90 1 4 7 z v b

SUB C 91 1 4 7 z v b

SUB D 92 1 4 7 z v b

SUB E 93 1 4 7 z v b

SUB H 94 1 4 7 z v b

SUB HIX DD AC 2 8 7 z v b

SUB HIY FD AC 2 8 7 z v b

SUB L 95 1 4 7 z v b

SUB LIX DD AD 2 8 7 z v b

SUB LIY FD AD 2 8 7 z v b

SUB n D6 n 2 7 7 z v b

XOR (HL) AE 1 7 7 z p 0

XOR (IX+d) DD AC d 3 19 7 z p 0

XOR (IY+d) FD AC d 3 19 7 z p 0

XOR A AF 1 4 7 z p 0

XOR B A8 1 4 7 z p 0

The Amstrad CPC Firmware Guide 104

Instruction Opcode B Ts S Z P C

XOR C A9 1 4 7 z p 0

XOR D AA 1 4 7 z p 0

XOR E AB 1 4 7 z p 0

XOR H AC 1 4 7 z p 0

XOR HIX DD AC 2 8 7 z p 0

XOR HIY FD AD 2 8 7 z p 0

XOR L AD 1 4 7 z p 0

XOR LIX DD AC 2 8 7 z p 0

XOR LIY FD AD 2 8 7 z p 0

XOR n EE n 2 7 7 z p 0

The Amstrad CPC Firmware Guide 105

The CRTC Registers

To change the value of these registers, the register number should be output on address &BCxx and
then the data output on &BDxx

Reg Function Default Value Reg Function Default Value

R0 Horizontal Total 63 R1 Horizontal Displayed 40

R2 Horizontal Sync Pos. 46 R3 Sync Width 112

R4 Vertical Total 38 R5 Vertical Total Adjust 0

R6 Vertical Displayed 25 R7 Vertical Sync Position 30

R8 Interlace and Skew 0 R9 Maximum Raster Addr 7

R10 Cursor Start Raster 0 R11 Cursor End Raster 0

R12 Start Address (H) 48 R13 Start Address (L) 0

R14 Cursor Register (H) 192 R15 Cursor Register (L) 07

